K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{3}{2^2}+\dfrac{8}{3^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(=1+1+...+1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}\right)\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{2023^2}< \dfrac{1}{2022\cdot2023}=\dfrac{1}{2022}-\dfrac{1}{2023}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1\)

=>\(0< \dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1\)

=>A không là số tự nhiên

8 tháng 5 2024

A=3/2^2 + 8/3^2 + ... + 2023^2 - 1/2023^2

A =2^2-1/2^2  + 3^2-1/3^2 +...+ 2023^2-1/2023^2

A=1 - 1/2^2 + 1- 1/3^2 + ... + 1 - 1/2023^2

A=1+1+...+1 - (1/2^2 +1/3^2 + 1/4^2 +...+1/2023^2)

A=2022 - (1/2^2 + 1/3^2 + ... + 1/2023^2) <2022 (1)

Ta có 1/2^2 < 1/1.2

           1/3^2 <1/2.3

           .................

            1/2023^2 < 1/2022.2023

suy ra 

1/2^2 + 1/3^2 + ... +1/2023^2 <1/1.2 + 1/2.3 +...+1/2022.2023

Ta có 

1/1.2 + 1/2.3 + .... +1/2022.2023

=1/1 - 1/2 + 1/2 - 1/3 + ....+1/2022 - 1/2023

=1/1 - 1/2023

suy ra 1/2^2 + 1/3^2 + ... + 1/2023^2<1-1/2023

suy ra A =2022 - (1/2^2 + 1/3^2 + .... + 1/2023^2) > 2022-(1-2023)

suy ra 2022 - (1/2^2 + 1/3^2 +...+1/2023^2) >2021 + 1/2023 >2021(2)

tù 1,2 suy ra 

    2021<A<2022

 suy ra A ko là số tự nhiên 

Vậy A ko là số tự nhiên

20 tháng 3 2023

A=322+832+1542+....+20232120232�=322+832+1542+....+20232-120232

A=1122+1132+1142+....+1120232�=1-122+1-132+1-142+....+1-120232

A=2022(122+132+142+...+120232)�=2022-(122+132+142+...+120232)

122+132+142+...+120232<11.2+12.3+13.4+...+12022.2023122+132+142+...+120232<11.2+12.3+13.4+...+12022.2023

11.2+12.3+13.4+...+12022.2023=112+1213+....1202311.2+12.3+13.4+...+12022.2023=1-12+12-13+....-12023

0<122+132+142+...+120232<112023<1⇒0<122+132+142+...+120232<1-12023<1

2022(122+132+142+...+120232)⇒2022-(122+132+142+...+120232)ko phải số tự nhiên

A⇒� ko phải số tự nhiên

9 tháng 4 2023

322+832+1542+....+20232-120232"" id="MathJax-Element-1-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-table; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=322+832+1542+....+20232−120232�=322+832+1542+....+20232-120232A=

1-122+1-132+1-142+....+1-120232"" id="MathJax-Element-2-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=1−122+1−132+1−1(2+....+1)120232�=1-122+1-132+1-142+....+1-1202321+12+13+...+122023−1

2022-(122+132+142+...+120232)"" id="MathJax-Element-3-Frame" role="presentation" tabindex="0" style="box-sizing: inherit; display: inline-block; line-height: 0; font-size: 18.08px; overflow-wrap: normal; word-spacing: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; margin: 0px; padding: 1px 0px; position: relative;">A=2022−(122+132+142+...+120232)�=2022-(122+132+142+...+120232)A

122+132+142+.... <20232

4 tháng 5 2022

hảo hán nào giải đc không vậy?

4 tháng 5 2022

quên cách làm rùi

15 tháng 6 2023

\(A=\dfrac{3}{2^2}+\dfrac{8}{3^2}+\dfrac{15}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(A=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+\dfrac{4^2-1}{4^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(A=1-\dfrac{1}{2^2}+1-\dfrac{1}{3^2}+1-\dfrac{1}{4^2}+...+1-\dfrac{1}{2023^2}\)

\(A=(1+1+1+...+1)-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+..+\dfrac{1}{2023^2})\)

Tổng số hạng của 2 ngoặc trên bằng nhau và =(2023-2):1+1=2022(số hạng)

\(A=2022-(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2})\)

Ta thấy:

\(0<\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{2023^2}<\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)

Ta có

\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+..+\dfrac{1}{2022.2023}\)

\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+..+\dfrac{1}{2022}-\dfrac{1}{2023}\)

\(=1-\dfrac{1}{2023}<1\)

Do đó,2021<A<2022 

Vậy giá trị của A không phải 1 số tự nhiên(đpcm)

20 tháng 3 2024

Ko bt

21 tháng 12 2023

Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)

\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)

=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)

=>\(3A=2^{2024}-1\)

mà \(2\cdot B=2^{2024}\)

nên 3A và 2B là hai số tự nhiên liên tiếp

17 tháng 12 2023

a: \(\left(2x-y+7\right)^{2022}>=0\forall x,y\)

\(\left|x-1\right|^{2023}>=0\forall x\)

=>\(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}>=0\forall x,y\)

mà \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}< =0\forall x,y\)

nên \(\left(2x-y+7\right)^{2022}+\left|x-1\right|^{2023}=0\)

=>\(\left\{{}\begin{matrix}2x-y+7=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2x+7=9\end{matrix}\right.\)

\(P=x^{2023}+\left(y-10\right)^{2023}\)

\(=1^{2023}+\left(9-10\right)^{2023}\)

=1-1

=0

c: \(\left|x-3\right|>=0\forall x\)

=>\(\left|x-3\right|+2>=2\forall x\)

=>\(\left(\left|x-3\right|+2\right)^2>=4\forall x\)

mà \(\left|y+3\right|>=0\forall y\)

nên \(\left(\left|x-3\right|+2\right)^2+\left|y+3\right|>=4\forall x,y\)

=>\(P=\left(\left|x-3\right|+2\right)^2+\left|y-3\right|+2019>=4+2019=2023\forall x,y\)

Dấu '=' xảy ra khi x-3=0 và y-3=0

=>x=3 và y=3