K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(A=\dfrac{3}{2^2}+\dfrac{8}{3^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(=\dfrac{2^2-1}{2^2}+\dfrac{3^2-1}{3^2}+...+\dfrac{2023^2-1}{2023^2}\)

\(=1+1+...+1-\left(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}\right)\)

\(\dfrac{1}{2^2}< \dfrac{1}{1\cdot2}=1-\dfrac{1}{2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2\cdot3}=\dfrac{1}{2}-\dfrac{1}{3}\)

...

\(\dfrac{1}{2023^2}< \dfrac{1}{2022\cdot2023}=\dfrac{1}{2022}-\dfrac{1}{2023}\)

Do đó: \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{2022}-\dfrac{1}{2023}\)

=>\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1\)

=>\(0< \dfrac{1}{2^2}+\dfrac{1}{3^2}+...+\dfrac{1}{2023^2}< 1\)

=>A không là số tự nhiên

8 tháng 5 2024

A=3/2^2 + 8/3^2 + ... + 2023^2 - 1/2023^2

A =2^2-1/2^2  + 3^2-1/3^2 +...+ 2023^2-1/2023^2

A=1 - 1/2^2 + 1- 1/3^2 + ... + 1 - 1/2023^2

A=1+1+...+1 - (1/2^2 +1/3^2 + 1/4^2 +...+1/2023^2)

A=2022 - (1/2^2 + 1/3^2 + ... + 1/2023^2) <2022 (1)

Ta có 1/2^2 < 1/1.2

           1/3^2 <1/2.3

           .................

            1/2023^2 < 1/2022.2023

suy ra 

1/2^2 + 1/3^2 + ... +1/2023^2 <1/1.2 + 1/2.3 +...+1/2022.2023

Ta có 

1/1.2 + 1/2.3 + .... +1/2022.2023

=1/1 - 1/2 + 1/2 - 1/3 + ....+1/2022 - 1/2023

=1/1 - 1/2023

suy ra 1/2^2 + 1/3^2 + ... + 1/2023^2<1-1/2023

suy ra A =2022 - (1/2^2 + 1/3^2 + .... + 1/2023^2) > 2022-(1-2023)

suy ra 2022 - (1/2^2 + 1/3^2 +...+1/2023^2) >2021 + 1/2023 >2021(2)

tù 1,2 suy ra 

    2021<A<2022

 suy ra A ko là số tự nhiên 

Vậy A ko là số tự nhiên

4 tháng 5 2022

hảo hán nào giải đc không vậy?

4 tháng 5 2022

quên cách làm rùi

21 tháng 12 2023

Sửa đề: \(A=1+2^2+2^4+...+2^{2022}\)

\(\Leftrightarrow4\cdot A=2^2+2^4+2^6+...+2^{2024}\)

=>\(4A-A=2^2+2^4+...+2^{2024}-1-2^2-...-2^{2022}\)

=>\(3A=2^{2024}-1\)

mà \(2\cdot B=2^{2024}\)

nên 3A và 2B là hai số tự nhiên liên tiếp

26 tháng 1 2024

\(A=\dfrac{2023^{2022+2}}{2023^{2022-1}}=2023^{2024-2021}=2023^3\\ B=\dfrac{2023^{2022}}{2023^{2022-3}}=2023^3\\ \Rightarrow A=B\left(=2023^3\right)\)

8 tháng 4 2018

Ta có : 

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{4-1}{4}+\frac{9-1}{9}+\frac{16-1}{16}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{n^2-1}{n^2}\)

\(S=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+\frac{4^2}{4^2}-\frac{1}{4^2}+...+\frac{n^2}{n^2}-\frac{1}{n^2}\)

\(S=1-\frac{1}{2^2}+1-\frac{1}{3^2}+1-\frac{1}{4^2}+...+1-\frac{1}{n^2}\)

\(S=\left(1+1+1+...+1\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Vì từ \(2\) đến \(n\) có \(n-2+1=n-1\) số \(1\) nên : 
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\) \(\left(1\right)\)

Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\) ta lại có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\)

\(A< 1-\frac{1}{n}< 1\)

\(\Rightarrow\)\(S=n-1-A>n-1-1=n-2\) 

\(\Rightarrow\)\(S>n-2\) \(\left(2\right)\)

Từ (1) và (2) suy ra : 

\(n-2< S< n-1\)

Vì \(n>3\) nên \(S\) không là số tự nhiên 

Vậy \(S\) không là số tự nhiên 

Chúc bạn học tốt ~ 

15 tháng 11 2021

1)  A=62020+62021+62022+62023

    A= ( 62020+62021) +  ( 62022+62023)

    A= 62020.( 1+6) + 62022.( 1+6)

    A= 62020.7+62022.7

    A= 7.( 62020+62022)

Vì 7 chia hết cho 7 => 7.(62020+62022) chia hết cho 7 hay A chia hết cho 7.

Vậy A chia hết cho 7

    _HT_

15 tháng 11 2021

2)  1+2+3+...+n=1275

Ta thấy dãy số trên là dãy số cách đều nên có khoảng cách là 1 đơn vị 

=> Dãy số trên có n số hạng

Tổng của dãy số trên là :   (n+1).n:2 = 1275

                                          (n+1).n= 1275.2=2550

Mà n và n+1 là 2 số tự nhiên liên tiếp => (n+1).n = 51.50

=> n=50 ( vì n< n+1)

  Vậy n=50

_HT_