K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 10 2017

\(A>0\Leftrightarrow\sqrt{x}-x>0\)

\(\Leftrightarrow\sqrt{x}>x\Leftrightarrow x>x^2\)

\(\Leftrightarrow x\left(x-1\right)< 0\)

\(\Leftrightarrow0< x< 1\)

7 tháng 10 2017

\(0;1\)

18 tháng 10 2018

\(\sqrt{x-1}\ge0\Leftrightarrow x\ge1\)

\(\sqrt{x-1}\ne\sqrt{2}\Leftrightarrow x-1\ne2\Leftrightarrow x\ne3\)

=.= hok tốt!!

18 tháng 10 2018

\(\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{\left(\sqrt{x-1}-\sqrt{2}\right)\left(\sqrt{x-1}+\sqrt{2}\right)}\)

\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-1-2}\)

\(=\frac{\left(x-3\right)\left(\sqrt{x-1}+\sqrt{2}\right)}{x-3}=\sqrt{x-1}+\sqrt{2}\)

2 tháng 9 2019

\(2,\)

\(a,\sqrt{x^2-4x+3}=3\)

\(\Rightarrow x^2-4x+3=9\)

\(\Rightarrow x^2-4x-6=0\)

\(\Rightarrow\left(x-2\right)^2=10\)

\(\Rightarrow\orbr{\begin{cases}x-2=\sqrt{10}\\x-2=-\sqrt{10}\end{cases}\Rightarrow\orbr{\begin{cases}x=2+\sqrt{10}\\x=2-\sqrt{10}\end{cases}}}\)

2 tháng 9 2019

\(a,x\ge0;x\ne1;B,x\ge0;x\ne9;C,x>0;x\ne4\)

\(d,x\ge0;x\ne25\)

6 tháng 7 2021

ĐK:\(x\ge0;x\ne9\)

a) \(P=\dfrac{\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}-\dfrac{5}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-3\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}-3-5+x-4}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}+x-12}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+2\right)}\)

\(=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}\)

b)\(P=\dfrac{\sqrt{x}+4}{\sqrt{x}+2}=1+\dfrac{2}{\sqrt{x}+2}\le1+\dfrac{2}{0+2}=2\)

Dấu "=" xảy ra khi \(x=0\)

Vậy \(P_{max}=2\)

a) Ta có: \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)

\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-2x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

5 tháng 7 2021

Đoạn dấu bằng thứ 4 em làm nhầm rồi nha:

\(=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)

\(=\dfrac{x+8}{\sqrt{x}+1}\)

b)\(P=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{\left(x-1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}=\left(\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}\right)-2\ge2\sqrt{\left(\sqrt{x}+1\right).\dfrac{9}{\sqrt{x}+1}}-2\)

\(\Leftrightarrow P\ge4\)

Dấu "=" xảy ra khi \(\sqrt{x}+1=\dfrac{9}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}+1=3\Leftrightarrow x=4\) (tm)

Vậy \(P_{min}=4\)