Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ĐK:\(x\ge0;x\ne9\)
\(P=\left[\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\dfrac{\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}-\dfrac{3x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right]:\dfrac{2\sqrt{x}-2-\left(\sqrt{x}-3\right)}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\dfrac{\sqrt{x}-3}{\sqrt{x}+1}=\dfrac{-3}{\sqrt{x}+3}\)
b)\(P=-\dfrac{3}{\sqrt{x}+3}\)
Có \(\sqrt{x}+3\ge3;\forall x\ge0\)
\(\Leftrightarrow-\dfrac{3}{\sqrt{x}+3}\ge-\dfrac{1}{3}\)
\(P_{min}=-\dfrac{1}{3}\Leftrightarrow x=0\)
a) Ta có: \(P=\left(\dfrac{2\sqrt{x}}{\sqrt{x}+3}+\dfrac{\sqrt{x}}{\sqrt{x}-3}-\dfrac{3x+3}{x-9}\right):\left(\dfrac{2\sqrt{x}-2}{\sqrt{x}-3}-1\right)\)
\(=\dfrac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3x-3}{\left(\sqrt{x}+3\right)\cdot\left(\sqrt{x}-3\right)}:\dfrac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\dfrac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\cdot\dfrac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\dfrac{-3\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}\)
\(=\dfrac{-3}{\sqrt{x}+3}\)
1 , ĐKXĐ : \(x\ge0,x\ne1\)
Với điều kiện xác định trên phương trình đã cho thánh :
\(\dfrac{1}{\sqrt{x}+1}-\dfrac{2}{\sqrt{x}-1}+\dfrac{x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1-2\left(\sqrt{x}+1\right)+x+3}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{x+\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}}{\sqrt{x}-1}\)
a) Ta có: \(P=\dfrac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\dfrac{2\left(\sqrt{x}-3\right)}{\sqrt{x}+1}+\dfrac{\sqrt{x}+3}{3-\sqrt{x}}\)
\(=\dfrac{x\sqrt{x}-3-2\left(\sqrt{x}-3\right)^2-\left(\sqrt{x}+3\right)\left(\sqrt{x}+1\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-3-2\left(x-6\sqrt{x}+9\right)-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-4\sqrt{x}-6-2x+12\sqrt{x}-18}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-2x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
Đoạn dấu bằng thứ 4 em làm nhầm rồi nha:
\(=\dfrac{x\sqrt{x}-3-2x+12\sqrt{x}-18-x-4\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x\sqrt{x}-3x+8\sqrt{x}-24}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}=\dfrac{\left(\sqrt{x}-3\right)\left(x+8\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+8}{\sqrt{x}+1}\)
b)\(P=\dfrac{x+8}{\sqrt{x}+1}=\dfrac{\left(x-1\right)+9}{\sqrt{x}+1}=\sqrt{x}-1+\dfrac{9}{\sqrt{x}+1}=\left(\sqrt{x}+1+\dfrac{9}{\sqrt{x}+1}\right)-2\ge2\sqrt{\left(\sqrt{x}+1\right).\dfrac{9}{\sqrt{x}+1}}-2\)
\(\Leftrightarrow P\ge4\)
Dấu "=" xảy ra khi \(\sqrt{x}+1=\dfrac{9}{\sqrt{x}+1}\Leftrightarrow\sqrt{x}+1=3\Leftrightarrow x=4\) (tm)
Vậy \(P_{min}=4\)
Bài 2:
a: \(A=\left(5+\sqrt{5}\right)\left(\sqrt{5}-2\right)+\dfrac{\sqrt{5}\left(\sqrt{5}+1\right)}{4}-\dfrac{3\sqrt{5}\left(3-\sqrt{5}\right)}{4}\)
\(=-5+3\sqrt{5}+\dfrac{5+\sqrt{5}-9\sqrt{5}+15}{4}\)
\(=-5+3\sqrt{5}+5-2\sqrt{5}=\sqrt{5}\)
b: \(B=\left(\dfrac{x+\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+3\right)}\right):\dfrac{x+3\sqrt{x}-2\left(\sqrt{x}+3\right)+6}{\sqrt{x}\left(\sqrt{x}+3\right)}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+1\right)}{x+3\sqrt{x}+6-2\sqrt{x}-6}=1\)
a: \(=4+\sqrt{11}+\dfrac{3}{2}-\dfrac{1}{2}\sqrt{7}-4-2\sqrt{7}-\dfrac{1}{2}\sqrt{7}+\dfrac{5}{2}\)
\(=4+\sqrt{11}-3\sqrt{7}\)
b: \(VT=\dfrac{x+2\sqrt{xy}+y-x+2\sqrt{xy}-y+2x+2y}{2\left(x-y\right)}\)
\(=\dfrac{2x+4\sqrt{xy}+2y}{2\left(x-y\right)}=\dfrac{x+2\sqrt{xy}+y}{x-y}=\dfrac{\sqrt{x}+\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)
a) \(U=\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(U=\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}-\dfrac{3\sqrt{x}-2}{\sqrt{x}-1}-\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
\(U=\dfrac{15\sqrt{x}-11-\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)-\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(U=\dfrac{15\sqrt{x}-11-\left(3x+9\sqrt{x}-2\sqrt{x}-6\right)-\left(2x-2\sqrt{x}+3\sqrt{x}-3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(U=\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(U=\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\Leftrightarrow\dfrac{-5\left(\sqrt{x}-1\right)\left(\sqrt{x}-\dfrac{2}{5}\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
\(\Leftrightarrow\dfrac{-5\left(\sqrt{x}+\dfrac{2}{5}\right)}{\sqrt{x}+3}\Leftrightarrow\dfrac{-5\sqrt{x}-2}{\sqrt{x}+3}\)
b) ta có \(U=\dfrac{1}{2}\) \(\Leftrightarrow\dfrac{-5\sqrt{x}-2}{\sqrt{x}+3}=\dfrac{1}{2}\) \(\Leftrightarrow\sqrt{x}+3=2\left(-5\sqrt{x}-2\right)\)
\(\Leftrightarrow\sqrt{x}+3=-10\sqrt{x}-4\Leftrightarrow\sqrt{x}+3-\left(-10\sqrt{x}-4\right)\)
\(\Leftrightarrow\sqrt{x}+3+10\sqrt{x}+4=0\Leftrightarrow11\sqrt{x}+7=0\Leftrightarrow11\sqrt{x}=-7\)
\(\Leftrightarrow\sqrt{x}=\dfrac{-7}{11}\left(vôlí\right)\)
vậy không có giá trị nào để \(U=\dfrac{1}{2}\)
Bài 1:
a: \(P=\dfrac{x+\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}+1\right)}\cdot\dfrac{\sqrt{x}+1}{1}=\dfrac{x+\sqrt{x}+1}{\sqrt{x}}\)
b: \(x=2+2\sqrt{5}+2-2\sqrt{5}=4\)
Khi x=4 thì \(P=\dfrac{4+2+1}{2}=\dfrac{7}{2}\)
a) ĐKXĐ: \(x>0;x\ne1;x\ne4\), rút gọn: \(Y=\left(\sqrt{x}-3+\dfrac{1}{\sqrt{x}-1}\right):\left(\sqrt{x}-1+\dfrac{1}{1-\sqrt{x}}\right)=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)+1}{\sqrt{x}-1}:\dfrac{\left(\sqrt{x}-1\right)^2-1}{\sqrt{x}-1}=\dfrac{x-\sqrt{x}-3\sqrt{x}+3+1}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{x-2\sqrt{x}+1-1}=\dfrac{x-4\sqrt{x}+4}{x-2\sqrt{x}}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\)
\(a.Y=\left(\sqrt{x}-3+\dfrac{1}{\sqrt{x}-1}\right):\left(\sqrt{x}-1+\dfrac{1}{1-\sqrt{x}}\right)=\dfrac{x-4\sqrt{x}+3+1}{\sqrt{x}-1}:\dfrac{x-2\sqrt{x}+1-1}{\sqrt{x}-1}=\dfrac{\left(\sqrt{x}-2\right)^2}{\sqrt{x}-1}.\dfrac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}=\dfrac{\sqrt{x}-2}{\sqrt{x}}\left(x>0;x\ne1;x\ne4\right)\)
\(b.Y< \dfrac{1}{2}\Leftrightarrow\dfrac{\sqrt{x}-2}{\sqrt{x}}-\dfrac{1}{2}< 0\)
\(\Leftrightarrow\dfrac{\sqrt{x}-4}{2\sqrt{x}}< 0\)
Do : \(2\sqrt{x}>0\)\(\Leftrightarrow\sqrt{x}-4< 0\Leftrightarrow x< 16\)
Kết hợp với ĐKXĐ : \(0< x< 16\left(x\ne1;x\ne4\right)\)