Tìm \(x\in Z\)để
a)\(2^x+3^x=35\)
b)\(2^x+3^x=5^x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) ta có \(2^x+3^x=35\\ 2^x+3^x=8+27=2^3+3^3\\ v\text{ậy}x=3c\text{ách }n\text{ày}mikl\text{àm}vui\)
a: =>2x>-6
hay x>-3
e: =>(5-x)/x<0
=>0<x<5
h: \(\Leftrightarrow\dfrac{x+5-x-3}{x+3}< 0\)
\(\Leftrightarrow x+3< 0\)
hay x<-3
g: \(\Leftrightarrow\dfrac{2x+7}{x+4}>0\)
\(\Leftrightarrow\left[{}\begin{matrix}x>-\dfrac{7}{2}\\x< -4\end{matrix}\right.\)
Bài 1:a) |x - 3| = 2x + 4
=> \(\orbr{\begin{cases}x-3=2x+4\\x-3=-2x-4\end{cases}}\)
=> \(\orbr{\begin{cases}x-2x=4+3\\x+2x=-4+3\end{cases}}\)
=> \(\orbr{\begin{cases}-x=7\\3x=-1\end{cases}}\)
=> \(\orbr{\begin{cases}x=-7\\x=-\frac{1}{3}\end{cases}}\)
Vậy ...
b) Để M có giá trị nguyên thì 2n - 7 \(⋮\)n - 5
<=> 2(n - 5) + 3 \(⋮\)n - 5
<=> 3 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(3) = {1; -1; 3; -3}
Lập bảng :
n - 5 | 1 | -1 | 3 | -3 |
n | 6 | 4 | 8 | 2 |
Vậy ...
a) Do \(x^2-2x-6\) là số chính phương đặt \(x^2-2x-6=a^2\)
\(\Rightarrow x^2-2x+1-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-7=a^2\)
\(\Rightarrow\left(x-1\right)^2-a^2=7\)
\(\Rightarrow\left(x-a-1\right)\left(x+a-1\right)=7\)
Do: \(x-a-1< x+a-1\) nên:
\(\left\{{}\begin{matrix}x-a-1=1\\x+a-1=7\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x-2=8\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}2x=10\\x+a=8\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x=5\\a=3\end{matrix}\right.\)
Vậy: ...
a, Ta có \(\left(a-3+15\right)x^2y^3=4x^2y^3\Rightarrow a+12=4\Leftrightarrow a=-8\)
b, \(10ax^6y^6=-20x^6y^6\Rightarrow10a=-20\Leftrightarrow a=-2\)
\(b.\)Với \(x=1\)ta có :
\(VT=2^1+3^1=5\)
\(VP=5^1=5\)
\(\Rightarrow x=1\)là một nghiệm của phương trình
Với \(x\ne1\), ta có :
ta chia cả 2 vế cho 5 \(\Rightarrow\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x=1\)
Với \(x>1\)
\(\Rightarrow\left(\frac{2}{5}\right)^x< \frac{2}{5}\)
\(\left(\frac{3}{5}\right)^x< \frac{3}{5}\)
suy ra : \(\left(\frac{2}{5}\right)^x+\left(\frac{3}{5}\right)^x< 1\)
\(\Rightarrow x>1\)không là nghệm
Vậy \(x=1\)là nghiệm phương trình