cho các số thực dương x,y,z thỏa mãn x2+y3+z4>x3+y4+z^5. chứng minh rằng x+y+z<3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Ta có: \(\left(x+y\right)^2\)
\(=x^2+2xy+y^2\)
\(\Leftrightarrow x^2+y^2=\dfrac{\left(x+y\right)^2}{2xy}\ge\dfrac{\left(x+y\right)^2}{2}\forall x,y>0\)
Áp dụng BĐT Cauhy-Schwarz ta có:
\(A=x^4+y^4+z^4\ge\frac{\left(x^2+y^2+z^2\right)^2}{3}\)
\(\ge\frac{\left(\frac{x+y+z}{3}\right)^2}{3}=\frac{\frac{1}{9}}{3}=\frac{1}{27}\)
Xảy ra khi x=y=z=1/3
Đáp án D.
Ta có:
log x + y = z log x 2 + y 2 = z + 1 ⇔ x + y = 10 z + x 2 + y 2 = 10 z + 1 = 10.10 z ⇒ x 2 + y 2 = 10 x + y
Khi đó:
x 3 + y 3 = a .10 3 z + b .10 2 z ⇔ x + y x 2 − x y + y 2 = a . 10 z 3 + b . 10 z 2 ⇔ x + y x 2 − x y + y 2 = a . x + y 3 + b . x + y 2 ⇔ x 2 − x y + y 2 = a . x + y 2 + b . x + y ⇔ x 2 − x y + y 2 = a . x 2 + 2 x y + y 2 + b 10 . x 2 + y 2 ⇔ x 2 + y 2 − x y = a + b 10 . x 2 + y 2 + 2 a . x y
Đồng nhất hệ số, ta được:
a + b 10 = 1 2 a = − 1 ⇒ a = − 1 2 b = 15 .
Vậy a + b = 29 2 .
drthe46he46he46