K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Hoán vị 3 bạn nữ thành 1 nhóm hàng ngang:

=> có 3! cách xếp

Hoán vị nhóm gồm 3 bạn nữ với 7 nam  là hoán vị 8 phần tử :

=-> 8 ! cách xếp

Tổng số cách xếp thỏa là : 3!.8! cách

a: Coi 3 bạn nữ như 1 người

Số cách xếp là:

\(8!\cdot3!\)(cách)

b: Số cách xếp là:

\(10!-8!\cdot3!\left(cách\right)\)

8 tháng 9 2019

Số cách chọn 2 nam đứng ở đầu và cuối là  .

 Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là  .

 Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:

Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:

Chọn D.

21 tháng 5 2019

Số dãy có học sinh nam đứng đầu và xếp nam nữ xen kẽ nhau là: 5.5.4.4.3.3.2.2.1.1=  ( 5 ! ) 2

Tương tự, số dãy học sinh nữ đứng đầu và xếp nam nữ xen kẽ nhau là: (5!)2. Vậy có tất cả ( 5 ! ) 2 + ( 5 ! ) 2 = 2 .   ( 5 ! ) 2 cách xếp nam, nữ đứng xen kẽ thành một hàng ngang

Chọn C

NV
9 tháng 1

a.

Xếp 4 bạn nữ cạnh nhau: \(4!\) cách

Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách

Theo quy tắc nhân ta có: \(4!.7!\) cách

b.

Xếp 6 bạn nam: \(6!\) cách

6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách

\(\Rightarrow6!.C_7^4\) cách

c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)

d. 

Xếp 4 nữ cạnh nhau: \(4!\) cách

Xếp 6 nam cạnh nhau: \(6!\) cách

Hoán vị nhóm nam và nữ: \(2!\) cách

\(\Rightarrow4!.6!.2!\) cách

NV
2 tháng 11 2021

Xếp 6 học sinh nữ: \(6!\) cách

6 học sinh nữ tạo ra 5 khe trống (khe trống ở đây hiểu là khe trống giữa 2 học sinh nữ), xếp 4 học sinh nam vào 5 khe trống đó: \(A_5^4\) cách

Tổng cộng: \(6!.A_5^4=...\) cách

10 tháng 10 2023

 Xét hàng ngang gồm 6 vị trí như sau: _ _ _ _ _ _

 Ta xem 3 bạn nữ đứng cạnh nhau như 1 nhóm thì có 4 cách xếp nhóm này. Hơn nữa cứ mỗi vị trí như vậy lại có 2 cách xếp các thành viên trong nhóm. (Do bạn nữ Ashley phải đứng ở giữa). 

 3 vị trí còn lại thì sẽ có \(1.2.3=6\) cách sắp xếp các bạn nam.

 Do đó có tất cả \(4.2.6=48\) cách xếp thỏa mãn yêu cầu bài toán.

NV
11 tháng 3 2023

Xếp thứ tự 7 nam: có \(7!\) cách

7 nam tạo thành 8 khe trống, loại ra 2 khe trống bên ngoài 2 nam ngoài cùng, xếp 3 nữ vào 6 khe trống còn lại: \(A_6^3\) cách

Vậy tổng cộng có: \(7!.A_6^3\) cách xếp thỏa mãn

11 tháng 3 2023

Anh giúp em ạ! Anh làm theo cách gì hay và nhanh nhá anh, vì anh có nhiều cách hay lắm, em toàn nghĩ theo cách nguyên thủy 

https://hoc24.vn/cau-hoi/cho-tap-hop-x-gom-0-1-2-3-4-5-6-7-8-9-lap-duoc-bao-nhieu-so-tu-nhien-co-4-chu-so-sao-cho-co-2-chan-va-2-le.7748017658781 

26 tháng 10 2019

Xếp 2 bạn nữ đứng trước, số cách là 2!.

Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn;  xếp 2 bạn nam đó là  .

Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.

Số cách xếp 7 bạn này là 7!.

Áp dụng quy tắc nhân;  số cách xếp tất cả là: 

Chọn B.