Số cách xếp 7 nam, 3 nữ thành 1 hàng ngang sao cho hs nữ luôn đứng cạnh nhau.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Coi 3 bạn nữ như 1 người
Số cách xếp là:
\(8!\cdot3!\)(cách)
b: Số cách xếp là:
\(10!-8!\cdot3!\left(cách\right)\)
Số cách chọn 2 nam đứng ở đầu và cuối là .
Lúc này còn lại 5 nam và 5 nữ, để đưa 10 người này vào hàng thì trước tiên sẽ cho 5 nam đứng riêng thành hàng ngang, số cách đứng là 5!. Sau đó lần lượt “nhét” 5 nữ vào các khoảng trống ở giữa hoặc đầu, hoặc cuối của hàng 5 nam này, mỗi khoảng trống chỉ “nhét” 1 nữ hoặc không “nhét”, có tất cả 6 khoảng trống nên số cách xếp vào là .
Số cách xếp 10 người này thành hàng ngang mà 2 nữ bất kì không đứng cạnh nhau là:
Đưa 10 người này vào giữa 2 nam đầu và cuối đã chọn, số cách xếp là:
Chọn D.
Số dãy có học sinh nam đứng đầu và xếp nam nữ xen kẽ nhau là: 5.5.4.4.3.3.2.2.1.1= ( 5 ! ) 2
Tương tự, số dãy học sinh nữ đứng đầu và xếp nam nữ xen kẽ nhau là: (5!)2. Vậy có tất cả ( 5 ! ) 2 + ( 5 ! ) 2 = 2 . ( 5 ! ) 2 cách xếp nam, nữ đứng xen kẽ thành một hàng ngang
Chọn C
a.
Xếp 4 bạn nữ cạnh nhau: \(4!\) cách
Coi 4 bạn nữ là 1 bạn, xếp với 6 bạn nam: \(7!\) cách
Theo quy tắc nhân ta có: \(4!.7!\) cách
b.
Xếp 6 bạn nam: \(6!\) cách
6 bạn nam tạo thành 7 khe trống, xếp 4 nữ vào 7 khe trống này: \(C_7^4\) cách
\(\Rightarrow6!.C_7^4\) cách
c. Do có 6 nam và 4 nữ nên ko thể tồn tại cách xếp xen kẽ nam nữ (luôn có ít nhất 2 nam đứng cạnh nhau)
d.
Xếp 4 nữ cạnh nhau: \(4!\) cách
Xếp 6 nam cạnh nhau: \(6!\) cách
Hoán vị nhóm nam và nữ: \(2!\) cách
\(\Rightarrow4!.6!.2!\) cách
Xếp 6 học sinh nữ: \(6!\) cách
6 học sinh nữ tạo ra 5 khe trống (khe trống ở đây hiểu là khe trống giữa 2 học sinh nữ), xếp 4 học sinh nam vào 5 khe trống đó: \(A_5^4\) cách
Tổng cộng: \(6!.A_5^4=...\) cách
Xét hàng ngang gồm 6 vị trí như sau: _ _ _ _ _ _
Ta xem 3 bạn nữ đứng cạnh nhau như 1 nhóm thì có 4 cách xếp nhóm này. Hơn nữa cứ mỗi vị trí như vậy lại có 2 cách xếp các thành viên trong nhóm. (Do bạn nữ Ashley phải đứng ở giữa).
3 vị trí còn lại thì sẽ có \(1.2.3=6\) cách sắp xếp các bạn nam.
Do đó có tất cả \(4.2.6=48\) cách xếp thỏa mãn yêu cầu bài toán.
Xếp thứ tự 7 nam: có \(7!\) cách
7 nam tạo thành 8 khe trống, loại ra 2 khe trống bên ngoài 2 nam ngoài cùng, xếp 3 nữ vào 6 khe trống còn lại: \(A_6^3\) cách
Vậy tổng cộng có: \(7!.A_6^3\) cách xếp thỏa mãn
Anh giúp em ạ! Anh làm theo cách gì hay và nhanh nhá anh, vì anh có nhiều cách hay lắm, em toàn nghĩ theo cách nguyên thủy
https://hoc24.vn/cau-hoi/cho-tap-hop-x-gom-0-1-2-3-4-5-6-7-8-9-lap-duoc-bao-nhieu-so-tu-nhien-co-4-chu-so-sao-cho-co-2-chan-va-2-le.7748017658781
Xếp 2 bạn nữ đứng trước, số cách là 2!.
Sau đó chọn 2 bạn nam chen vào giữa 2 bạn nữ, số cách chọn; xếp 2 bạn nam đó là .
Sau khi chọn 2 bạn nam đó rồi thì còn 6 bạn nam. Ta coi 2bạn nam và 2 bạn nữa đã xếp chỗ là 1 bạn cùng với 6 bạn nam chưa xếp là có 7 bạn.
Số cách xếp 7 bạn này là 7!.
Áp dụng quy tắc nhân; số cách xếp tất cả là:
Chọn B.
Hoán vị 3 bạn nữ thành 1 nhóm hàng ngang:
=> có 3! cách xếp
Hoán vị nhóm gồm 3 bạn nữ với 7 nam là hoán vị 8 phần tử :
=-> 8 ! cách xếp
Tổng số cách xếp thỏa là : 3!.8! cách