Cho tam giác ABC vuông tại A , M , N lần lượt là trung điểm của AB , BC . Gọi I , J lần lượt thuộc AB sao cho BI = IJ = JA
a)chứng minh AN = NB và tam giác IJN cân
b) chứng minh IN // CJ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABN vuông tại A và ΔACM vuông tại A có
AB=AC
góc ABN=góc ACM
=>ΔABN=ΔACM
b: ΔABN vuông tại A có AE là trung tuyến
nên AE=BE=NE=BN/2
ΔACM vuông tại A có AD là trung tuyến
nên AD=CM/2=BN/2=AE
góc EAB=góc EBA=15 độ
góc DAC=góc DCA=15 độ
=>góc EAD=90-15-15=60 độ
Xét ΔAED có AE=AD và góc EAD=60 độ
nên ΔAED đều
c: Xét ΔIBC có góc IBC=góc ICB
nên ΔIBC cân tại I
=>IB=IC
=>I nằm trên trung trực của BC
=>A,I,H thẳng hàng
a) Xét ΔABN và ΔACM có
AB=AC(ΔABC cân tại A)
\(\widehat{BAN}\) chung
AN=AM(gt)
Do đó: ΔABN=ΔACM(c-g-c)
Suy ra: BN=CM(hai cạnh tương ứng)
b) Xét ΔAHB và ΔAHC có
AB=AC(ΔABC cân tại A)
AH chung
HB=HC(H là trung điểm của BC)
Do đó: ΔAHB=ΔAHC(c-c-c)
Suy ra: \(\widehat{AHB}=\widehat{AHC}\)(hai góc tương ứng)
mà \(\widehat{AHB}+\widehat{AHC}=180^0\)(hai góc kề bù)
nên \(\widehat{AHB}=\widehat{AHC}=\dfrac{180^0}{2}=90^0\)
hay AH⊥BC(đpcm)
c) Ta có: AH⊥BC(cmt)
mà H là trung điểm của BC(gt)
nên AH là đường trung trực của BC
⇔EH là đường trung trực của BC
⇔EB=EC(Tính chất đường trung trực của một đoạn thẳng)
Xét ΔEBC có EB=EC(cmt)
nên ΔEBC cân tại E(Định nghĩa tam giác cân)
a) Ta có: ΔABC cân tại A(gt)
mà AM là đường trung tuyến ứng với cạnh đáy BC(M là trung điểm của BC)
nên AM là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇒AM⊥BC(đpcm)
Ta có: M là trung điểm của BC(gt)
nên \(BM=MC=\dfrac{BC}{2}=\dfrac{6}{2}=3\left(cm\right)\)
Áp dụng định lí pytago vào ΔABM vuông tại M, ta được:
\(AB^2=AM^2+MB^2\)
\(\Leftrightarrow AM^2=AB^2-MB^2=5^2-3^2=16\)
hay AM=4(cm)
Vậy: AM=4cm
b) Ta có: AI+IB=AB(I nằm giữa A và B)
AJ+JC=AC(J nằm giữa A và C)
mà AB=AC(ΔABC cân tại A)
và AI=AJ(gt)
nên BI=CJ(đpcm)
a: Xét ΔABE vuông tại E và ΔACF vuông tại F có
AB=AC
\(\widehat{BAE}\) chung
Do đó: ΔABE=ΔACF
b: Ta có: ΔABE=ΔACF
nên BE=CF
Xét ΔFBC vuông tại F và ΔECB vuông tại E có
BC chung
CF=BE
Do đó: ΔFBC=ΔECB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
hay ΔIBC cân tại I
c: Ta có: AB=AC
nên A nằm trên đườg trung trực của BC(1)
ta có: IB=IC
nên I nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực của BC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng