Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, xét tam giác ALI và tam giác ALD có : AL chung
DL = LI (gt)
^ALD = ^ALI = 90
=> tam giác ALI = tam giác ALD (2cgv)
=> AI = AD
tương tự cm được tam giác AKD = tam giác AKJ (2cgv) => AJ = AD
=> AI = AJ
=> tam giác AIJ cân tại A
a, Vì A thuộc đường trung trực của DI
nên AI = AD
Vì A thuộc đường trung trực của DJ nên AJ = AD
Do đó: AI=AJ hay \(\Delta\) AIJ cân tại A
b, ALI = ALD ( c.c.c )
=> AKD = AKJ ( c.c.c )
=> AIJ cân ( cmt )
=> DA là tia p/g của LDK
a, xét tam giác ALI và tam giác ALD có : AL chung
DL = LI (gt)
^ALD = ^ALI = 90
=> tam giác ALI = tam giác ALD (2cgv)
=> AI = AD
tương tự cm được tam giác AKD = tam giác AKJ (2cgv) => AJ = AD
=> AI = AJ
=> tam giác AIJ cân tại A
a: Xét ΔAIB và ΔAIC có
AB=AC
\(\widehat{BAI}=\widehat{CAI}\)
AI chung
Do đó: ΔAIB=ΔAIC
b: ΔAIB=ΔAIC
=>IB=IC và \(\widehat{AIB}=\widehat{AIC}\)
mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)
nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)
=>AI\(\perp\)BC
b: Xét ΔAHI vuông tại H và ΔAKI vuông tại K có
AI chung
\(\widehat{HAI}=\widehat{KAI}\)
Do đó: ΔAHI=ΔAKI
=>IH=IK
c: Xét ΔHIN vuông tại H và ΔKIM vuông tại K có
IH=IK
\(\widehat{HIN}=\widehat{KIM}\)
Do đó: ΔHIN=ΔKIM
=>IN=IM và HN=KM
ΔAHI=ΔAKI
=>AH=AK
AH+HN=AN
AK+KM=AM
mà AH=AK và HN=KM
nên AN=AM
=>A nằm trên đường trung trực của NM(1)
IN=IM(cmt)
nên I nằm trên đường trung trực của MN(2)
PN=PM
=>P nằm trên đường trung trực của MN(3)
Từ (1),(2),(3) suy ra A,I,P thẳng hàng