Cho a € Z
Chứng tỏ a ( a×a -1)(a×a+1):30 là chia hết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có
\(a+a^2+a^3+...+a^{30}\)
\(=a\left(1+a\right)+a^3\left(1+a\right)+a^5\left(1+a\right)+...+a^{29}\left(1+a\right)\)
\(=\left(a+a^3+a^5+...+a^{29}\right)\left(1+a\right)\)chia hết cho 1+a hay a=a^2+a^3+...+a^30 chia hết a+1 với a là số tự nhiên
a,
a= 21 + 22 + 23 + ....+ 230
a= ( 21+22 ) + (23 + 24 ) + ...+ ( 229 + 230 )
a = 21 (1+2) + 23(1+2) + ...+ 229(1+2)
a = 21.3 + 23 .3 + ...+ 229 .3
a = 3 ( 21 + 23 + ..+ 229 ) \(⋮\) 3
Vậy a chia hết cho 3
a = 21 + 22 + 23 + ....+ 230
a = ( 21 + 22 + 23 ) + ....+ ( 228 + 229 + 230 )
a = 21(1+2+22) + .....+ 228(1+2+22 )
a = 21 . 7 + ...+ 228.7
a = 7 (21 + ..+228) \(⋮\) 7
Vậy a chia hết cho 7
Vì a chia hết cho 3 và 7 nên a sẽ chia hết cho 21
b,
a = 88 + 220
a = (23)8 + 220
a = 224 + 220
a = 220 . 24 + 220
a=220(24 + 1)
a= 220 . 17 \(⋮\) 17
=> đpcm
(a2 - 1)(a2 + 1)
= a2(a2 + 1) - (a2 + 1)
= a2 . a2 + a2 - a2 - 1
= a4 - 1
Giả sử a là số chẵn thì a4 - 1 là số lẻ. Mà chia hết cho 30 là số chẵn \(\Rightarrow\) Đề sai
Số chính phương thường có tận cùng là 0 ; 1 ; 4 ; 6 ; 9
Nếu a2 tận cùng là 0 thì a cũng tận cùng là 0 ; tức tích trên chia hết cho 5.
Nếu a2 tận cùng là 1 thì a2-1 tận cùng là 0 ; tức tích trên chia hết cho 5.
Nếu a2 tận cùng là 4 thì a2+1 tận cùng là 5 ; tức tích trên chia hết cho 5.
Nếu a2 tận cùng là 6 thì a2-1 tận cùng là 5 ; tức tích trên chia hết cho 5.
Nếu a2 tận cùng là 9 thì a2+1 tận cùng là 0 ; tức tích trên chia hết cho 5.
Tóm lại, ta chắc chắn rằng a(a2-1)(a2+1) chia hết cho 5.
Giả sử a chẵn, thì tích trên chia hết cho 2.
Giả sử a lẻ, a2 cũng lẻ, và a2+1 chẵn thì tích trên chia hết cho 2.
Do đó tích trên vừa chia hết cho 2 vừa chia hết cho 5 ; (2;5)=1 nên tích chia hết cho 2 x 5 = 10.
Số chính phương luôn chia 3 dư 1 hoặc chia hết cho 3.
Nếu a2 chia 3 dư 1 thì a2-1 chia hết cho 3, tích trên chia hết cho 3.
Nếu a2 chia hết cho 3 thì a cũng chia hết cho 3; do đó tích trên chia hết cho 3.
Tích trên chia hết cho 10 và 3 ; mà (10;3)=1 nên nó chia hết cho 30.
Vậy \(a\left(a^2-1\right)\left(a^2+1\right)\) chia hết cho 30.
Ta có:
a.(a2 + 1).(a2 - 1)
= a.(a2 + 1).(a - 1).(a + 1)
= (a - 1).a.(a + 1).(a2 + 1)
Do (a - 1).a.(a + 1) là tích 3 số tự nhiên liên tiếp => (a - 1).a.(a + 1) chia hết cho 2 và 3
Mà (2,3)=1 => (a - 1).a.(a + 1) chia hết cho 6 (1)
Trở lại đề bài, lúc này ta phải chứng minh a.(a2 - 1).(a2 + 1) chia hết cho 5
Ta đã biết 1 số chính phương chia cho 5 chỉ có thể có 3 loại số dư là dư 0; 1 và 2
+ Nếu a2 chia hết cho 5 => a chia hết cho 5 => a.(a2 + 1).(a2 - 1) chia hết cho 5
+ Nếu a2 chia 5 dư 1 => a2 - 1 chia hết cho 5 => a.(a2 + 1).(a2 - 1) chia hết cho 5
+ Nếu a2 chia 5 dư 4 => a2 + 1 chia hết cho 5 => a.(a2 + 1).(a2 - 1) chia hết cho 5
=> a.(a2 + 1).(a2 - 1) luôn chia hết cho 5 (2)
Từ (1) và (2), do (5,6)=1 => a.(a2 + 1).(a2 - 1) chia hết cho 30
=> đpcm