Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(A=3+3^2+3^3+3^4+...+3^{120}\)
\(\Rightarrow3A=3.\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow3A=3^2+3^3+3^4+3^5+...+3^{121}\)
\(\Rightarrow3A-A=\left(3^2+3^3+3^4+3^5+...+3^{121}\right)-\left(3+3^2+3^3+3^4+...+3^{120}\right)\)
\(\Rightarrow2A=3^{121}-3\)
\(\Rightarrow A=\frac{3^{121}-3}{2}\)
b)
\(2A+3\)
\(=3^{121}-3+3\)
\(=3^{121}\)
Mà 3121 là lũy thừa của 3
\(\Rightarrow\) 2A + 3 là lũy thừa của 3.
a, b : 7 dư 4 ; c chia 7 dư 3 mà 4 + 3 = 7 chia hết cho 7
=> b+c chia hết cho 7
b, ( tương tự dựa vào đó mà lm nhé mày ) biết chưa quỷ cái
Cho A=2+2^2+2^3+.......+2^100
a) Chứng tỏ A chia hết cho 10
b) Chứng minh rằng: A+ 2 là lũy thừa của 2
a, Có : A = (2+2^2++2^3+2^4)+(2^5+2^6+2^7+2^8)+....+(2^97+2^98+2^99+2^100)
= 30 + 2^4.(2+2^2+2^3+2^4)+....+2^96.(2+2^2+2^3+2^4)
= 30 + 2^4.30 + .... + 2^96.30
= 30.(1+2^4+....+2^96) chia hết cho 30
=> A chia hết cho 10
b, Có : 2A = 2^2+2^3+....+2^101
A=2A-A=(2^2+2^3+....+2^101)-(2+2^2+2^3+....+2^100) = 2^101 - 2
=> A + 2 = 2^101 là lũy thừa của 2
=> ĐPCM
a/
Tổng các chữ số của ababab là :
a+b+a+b+a+b = 3a+3b = 3.[a+b] chia hết cho 3
=> ababab chia hết cho3
b/
S=16^5+2^15=[2^4]^5+2^15=2^20+2^15=2^15. [2^5+1] = 2^15.33 chia hết cho 33
=> đpcm
a)
ababab=ab0000+ab00+ab
= abx10000+abx100+abx1
=abx(10000+100+1)
=abx10101
ta có 10101 chia hết cho 3
nên abx10101 chia hết cho3
suy ra ababab là bội của 3