cho a= \(2^{2023}\) - \(2^{2022}\) - \(2^{2021}\) - ....-2-1
tính M = \(\dfrac{2^{2023}+2022}{2023^a-2022}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(B=\dfrac{154}{155+156}+\dfrac{155}{155+156}\)
\(\dfrac{154}{155}>\dfrac{154}{155+156}\)
\(\dfrac{155}{156}>\dfrac{155}{155+156}\)
=>154/155+155/156>(154+155)/(155+156)
=>A>B
b: \(C=\dfrac{2021+2022+2023}{2022+2023+2024}=\dfrac{2021}{6069}+\dfrac{2022}{6069}+\dfrac{2023}{6069}\)
2021/2022>2021/6069
2022/2023>2022/2069
2023/2024>2023/6069
=>D>C
Lời giải:
\(A=2.2022^{2023}+2(1^{2023}+2^{2023}+3^{2023}+...+1010^{2023}+1011^{2023}+1012^{2023}+...+2021^{2023})\)
\(=2.2022^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})+1011^{2023}]\)
\(=2.2022^{2023}+2.1011^{2023}+2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+...+(1010^{2023}+1012^{2023})]\)
Dễ thấy: $2.2022^{2023}\vdots 2022; 2.1011^{2023}=2022.1011^{2023}\vdots 2022$
Đối với biểu thức trong ngoặc vuông thì: Nhớ rằng với mọi $n$ lẻ thì $a^n+b^n\vdots a+b$ nên $1^{2023}+2021^{2023}\vdots 2022; 2^{2023}+2019^{2023}\vdots 2022;...; 1010^{2023}+1012^{2023}\vdots 2022$
$\Rightarrow 2[(1^{2023}+2021^{2023})+(2^{2023}+2019^{2023})+....+(1010^{2023}+1012^{2023})]\vdots 2022$
Do đó $A\vdots 2022$
a) \(\dfrac{17}{20}< \dfrac{18}{20}< \dfrac{18}{19}\Rightarrow\dfrac{17}{20}< \dfrac{18}{19}\)
b) \(\dfrac{19}{18}>\dfrac{19+2024}{18+2024}=\dfrac{2023}{2022}\Rightarrow\dfrac{19}{18}>\dfrac{2023}{2022}\)
c) \(\dfrac{135}{175}=\dfrac{27}{35}\)
\(\dfrac{13}{17}=\dfrac{26}{34}< \dfrac{26+1}{34+1}=\dfrac{27}{35}\)
\(\Rightarrow\dfrac{13}{17}< \dfrac{135}{175}\)
Các P/S đó > 3 nhé#
Kí hiệu # : nhận biết đây là tips, câu hỏi, câu trl của riêng mình, tuyệt đối ko copy dưới mọi hình thức. Trừ khi các bn đc sự cho phép của mik^^
>3 nhé
#Ko dựa trên căn bản kĩ thuật nào nên có thể có sai sót mong bn bỏ qua
oh no bài thứ nhất là dạng chứng minh cs đúng ko ,
ko thể nào là dạng tìm a,b,c đc-.-
Đặt
Đặt
Biểu thức có số số hạng là:
(số hạng)
Số nhóm được lập là:
(nhóm)
[ số hạng]
Vậy
Đặt \(b=2^{2022}+2^{2021}+...+2+1\)
=>\(2b=2^{2023}+2^{2022}+...+2^2+2\)
=>\(2b-b=2^{2023}+2^{2022}+...+2^2+2-2^{2022}-2^{2021}-...-2-1\)
=>\(b=2^{2023}-1\)
\(a=2^{2023}-2^{2023}+1=1\)
\(M=\dfrac{2^{2023}+2022}{2023^a-2022}=\dfrac{2^{2023}+2022}{2023-2022}=2^{2023}+2022\)