Giúp mink nha !
CMR : A = x6+1 chia hết cho x2+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=5^2+5^4+5^6+.....+5^{2020}\)
Biết rằng mỗi số mũ của tổng các lũy thừa là số chẵn cách nhau 3 đơn vị
\(S=5^2+2^1-5^1\)
\(S=7^3-5^1\)
\(S=5^2:1^1\)
\(S=4^1\)
2) Ta có đẳng thức sau: \(\left(a+b\right)\left(b+c\right)\left(c+a\right)=\left(a+b+c\right)\left(ab+bc+ca\right)-abc\)
Chứng minh thì bạn chỉ cần bung 2 vế ra là được.
\(\Rightarrow P=\left(a+b+c\right)\left(ab+bc+ca\right)-2abc\)
Do \(a+b+c⋮4\) nên ta chỉ cần chứng minh \(abc⋮2\) là xong. Thật vậy, nếu cả 3 số a, b,c đều không chia hết cho 2 thì \(a+b+c\) lẻ, vô lí vì \(a+b+c⋮4\). Do đó 1 trong 3 số a, b, c phải chia hết cho 2, suy ra \(abc⋮2\).
Do đó \(P⋮4\)
xét p dưới dạng : 3k (khi đó p=3), 3k + 1, 3k+2(k thuộc N).
dạng thứ 3 không thỏa mãn đề bài, (vì khi đó 8p-1 là hợp số), hai dạng trên đều cho 8p+1 là hợp số
TICK MIK NHÉ
\(x^6+1=\left(x^2\right)^3+1^3=\left(x^2+1\right)\left(x^4+x^2+1\right)\)
\(\Rightarrow x^6+1⋮x^2+1\)
cảm ơn bạn nha vậy mà mink nghĩ mãi ko ra