cho tam giác cân tại A (A<90 độ). Kẻ BD vuông góc AC (D thuộc AC), CE vuông góc với AB ( E thuộc AB ), BD và CE cắt nhau tại H
a) chứng Minh : tam giác BDC = tam giác CEB
b)Chứng minh : AH là đường trung trực của BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Trong hình thang cân ABCD (AB//CD) đặt m là sđ góc D (m<180 độ ) thì:D=C=m và A=B=180 độ-m
Tam giác ABD cân tại A =>^ABD=^ADB
AB//CD tạo với cát tuyến BD 2 góc so le trong ^ABD=^CDB
Suy ra ^ADB=^CDB,lại có tia DB nằm giữa 2 tia DA và DC nên tia DB là tia phân giác ^ADC=m độ
Vậy ^ABD= (1/2).m
Tam giác BCD cân tại D =>^DBC=^DCB=m độ
Tia BD nằm giữa 2 tia BA,BC nên ^ABC=^ABD+^DBC=(1/2).m+m (độ)
=(3/2).m (độ)
Mà ^ABC=180-m (độ),nên (3/2).m(độ)=180-m(độ)
hay 5/2.m=180 độ => m=360độ:5=72 độ
và 180 độ-m=108 độ
Trả lời : Trong hình thang cân ABCD kể trên,sđ 2 góc nhọn C và D là 72 độ,sđ 2 góc còn lại là 108 độ
a: Xét ΔABM và ΔACM có
AB=AC
BM=CM
AM chung
Do đó: ΔABM=ΔACM
b: ΔABC cân tại A
mà AM là trung tuyến
nên AM vuông góc với BC
d: Xét ΔAHM vuông tại H và ΔAKM vuông tại K có
AM chung
góc HAM=góc KAM
Do đó: ΔAHM=ΔAKM
=>AH=AK
Đặt x=góc BAC
=>góc ABC=góc ACB=90 độ-1/2*x
góc DAC=góc ACD=x
góc ABC=góc BDC=90 độ-x/2
=>góc DCB=180 độ-2*góc BAC=x
góc ACD+góc DCB=góc ABC=90 độ-x/2
=>5/2*x=90
=>x=36
=>góc BAC=36 độ
a: Xét ΔBNC và ΔCMB có
NB=MC
\(\widehat{NBC}=\widehat{MCB}\)
BC chung
Do đó; ΔBNC=ΔCMB
b: Sửa đề: Cm ΔANM cân tại A
Xét ΔANM có AN=AM
nên ΔANM cân tại A
a: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
\(\widehat{EBC}=\widehat{DCB}\)(ΔABC cân tại A)
Do đó: ΔEBC=ΔDCB
b: ΔEBC=ΔDCB
=>\(\widehat{ECB}=\widehat{DBC}\)
=>\(\widehat{HBC}=\widehat{HCB}\)
=>ΔHBC cân tại H
ta có: HB=HC
=>H nằm trên đường trung trực của BC(1)
ta có: AB=AC
=>A nằm trên đường trung trực của BC(2)
Từ (1),(2) suy ra AH là đường trung trực của BC
vẽ hình ra hộ cái