Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho \(x,y\ge0\)mà \(x^2-2xy+x-2y\le0\)
Tìm\(A_{max}=x^2-5y^2+3x\)
\(x^2-2xy+x-2y\le0\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)\le0\Leftrightarrow\left(x+1\right)\left(x-2y\right)\le0\)
Vì \(x\ge0\Rightarrow x+1\ge0\Rightarrow x-2y\le0\Rightarrow x\le2y\)
\(A=x^2-5y^2+3x\le\left(2y\right)^2-5y^2+3.2y=-y^2+6y=9-\left(y-3\right)^2\le9\)
=>\(A\le9\)
Dấu "=" xảy ra khi x=6;y=3
\(x^2-2xy+x-2y\le0\Leftrightarrow x\left(x-2y\right)+\left(x-2y\right)\le0\Leftrightarrow\left(x+1\right)\left(x-2y\right)\le0\)
Vì \(x\ge0\Rightarrow x+1\ge0\Rightarrow x-2y\le0\Rightarrow x\le2y\)
\(A=x^2-5y^2+3x\le\left(2y\right)^2-5y^2+3.2y=-y^2+6y=9-\left(y-3\right)^2\le9\)
=>\(A\le9\)
Dấu "=" xảy ra khi x=6;y=3