Tìm x,y thuộc Z thỏa :
y=3x+5/x+1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2.
a.
\(x^2+3x=k^2\)
\(\Leftrightarrow4x^2+12x=4k^2\)
\(\Leftrightarrow4x^2+12x+9=4k^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2=\left(2k\right)^2+9\)
\(\Leftrightarrow\left(2x+3\right)^2-\left(2k\right)^2=9\)
\(\Leftrightarrow\left(2x+3-2k\right)\left(2x+3+2k\right)=9\)
2x+3-2k | -9 | -3 | -1 | 1 | 3 | 9 |
2x+3+2k | -1 | -3 | -9 | 9 | 3 | 1 |
x | -4 | -3 | -4 | 1 | 0 | 1 |
nhận | nhận | nhận | nhận | nhận | nhận |
Vậy \(x=\left\{-4;-3;0;1\right\}\)
b. Tương tự
\(x^2+x+6=k^2\)
\(\Leftrightarrow4x^2+4x+24=4k^2\)
\(\Leftrightarrow\left(2k\right)^2-\left(2x+1\right)^2=23\)
\(\Leftrightarrow\left(2k-2x-1\right)\left(2k+2x+1\right)=23\)
Em tự lập bảng tương tự câu trên
1.
\(\Leftrightarrow x^2-2xy+y^2=-4y^2+y+1\)
\(\Leftrightarrow-4y^2+y+1=\left(x-y\right)^2\ge0\)
\(\Leftrightarrow-64y^2+16y+16\ge0\)
\(\Leftrightarrow\left(8y-1\right)^2\le17\)
\(\Rightarrow\left(8y-1\right)^2\le16\)
\(\Rightarrow-4\le8y-1\le4\)
\(\Rightarrow-\dfrac{3}{8}\le y\le\dfrac{5}{8}\)
\(\Rightarrow y=0\)
Thế vào pt ban đầu:
\(\Rightarrow x^2=1\Rightarrow x=\pm1\)
Vậy \(\left(x;y\right)=\left(-1;0\right);\left(1;0\right)\)
1)
Từ: \(\frac{3}{y}=\frac{7}{x}\)=>\(\frac{x}{7}=\frac{y}{3}\)
x+16=y =>x-y=-16
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{-16}{4}=-4\)(vì x-y=-16)
=>\(\frac{x}{7}=-4=>x=-28\)
=>\(\frac{y}{3}=-4=>y=-12\)
Vậy x=-28 ;y=-12
2)
=>x2-3x+5 chia hết cho x-3
mà (x-3)2 chia hết cho x-3
=>x2-3x+5 -(x-3)2 chia hết cho x-3
=> x2-3x+5 -x2-9 chia hết cho x-3
=>-3x+(-4) chia hết cho x-3
lại có : 3.(x-3) chia hết cho x-3
=>-3x-(-4)+3.(x-3) chia hết cho x-3
=>-3x+(-4)+3x-9 chia hết cho x-3
=>-13 chia hết cho x-3
=>x-3 \(\in\)Ư(13)={-1;1;-13;13}
=>x\(\in\){2;4;-9;16}
3x + xy + y = 0
=> x.(3 + y) = -y
\(\Rightarrow x=\frac{-y}{y+3}\)
Vì \(x\in Z\) nên \(\frac{-y}{y+3}\in Z\)
\(\Rightarrow-y⋮y+3\)
\(\Rightarrow y⋮y+3\)
\(\Rightarrow y+3-3⋮y+3\)
Do \(y+3⋮y+3\Rightarrow3⋮y+3\)
\(\Rightarrow y+3\in\left\{1;-1;3;-3\right\}\)
Ta có bảng sau:
y + 3 | 1 | -1 | 3 | -3 |
y | -2 | -4 | 0 | -6 |
x | 2 | -4 | 0 | -2 |
Vậy các cặp giá trị (x;y) thỏa mãn đề bài là: (2;-2) ; (-4;-4) ; (0;0) ; (-2;-6)
3x + xy + y = 0
<=> x(3+y) + (3+y) = 3
<=> (3+y)(x+1) = 3
Ta có bảng sau:
3+y | -1 | 1 | 3 | -3 |
x+1 | -3 | 3 | 1 | -1 |
y | -4 | -2 | 0 | -6 |
x | -4 | 2 | 0 | -2 |
Vậy các cặp (x,y) thỏa mãn là: (-4;-4);(2;-2);(0;0);(-2;-6)
\(y\in Z\Rightarrow3x+\frac{5}{x}+1\in Z\Rightarrow\frac{5}{x}\in Z\Leftrightarrow x\in\left\{\pm1,\pm5\right\}\)và \(y=3x+\frac{5}{x}+1\)