1+3+5+7+9+...+2023+2024
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
Ta có:
Mẫu số chung 2 phân số: 84
\(\dfrac{3}{7}=\dfrac{3*12}{7*12}=\dfrac{36}{84}\)
\(\dfrac{5}{12}=\dfrac{5*7}{12*7}=\dfrac{35}{84}\)
Vì \(36>35\) nên\(\dfrac{36}{84}>\dfrac{35}{84}\)
Vậy \(\dfrac{3}{7}>\dfrac{5}{12}\)
Ta có:
\(\dfrac{9}{8}>1>\dfrac{2023}{2024}\) nên \(\dfrac{9}{8}>\dfrac{2023}{2024}\)
Ta có:
\(\dfrac{1+15}{16}=1\)
\(\dfrac{1+16}{15}=\dfrac{17}{15}>1\)
\(\Rightarrow\dfrac{1+15}{16}>\dfrac{1+16}{15}\)
A = 1 - 2 - 3 + 4 + 5 - 6 - 7 + 8 + 9 - 10 - 11 + ... - 2023 + 2024 + 2025
Xét dãy số: 1; 2; 3; 4;..; 2025 là dãy số cách đều với khoảng cách là:
2 - 1 = 1
Số số hạng của dãy số trên là: ( 2025 - 1) : 1 + 1 = 2025
Vì 2025 : 4 = 506 dư 1
Nhóm 4 số hạng liên tiếp của A vào nhau thì được A là tổng của 506 nhóm và 2025 khi đó
A =(1-2-3+4)+(5 - 6 - 7 + 8) +...+(2021-2022-2023+2024) + 2025
A = 0 + 0 +...+ 0 + 2025
A = 2025
1-2+3-4+5-6+7-8+...+2023-2024
=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)=(1−2)+(3−4)+(5−6)+(7−8)+....+(2023−2024)
=−1+(−1)+(−1)+(−1)+...+(−1)=−1+(−1)+(−1)+(−1)+...+(−1)
=−1.1012=−1.1012
=−1012=−1012
1-2+3-4+5-6+ ... +2023-2024
= (-1) + (-1) + ... + (-1) (1012 số)
= (-1).1012
= -1012
A>1√2+√3+1√4+√5+1√6+√7+...+1√2024+√2025A>12+3+14+5+16+7+...+12024+2025
⇒2A>1√1+√2+1√2+√3+1√3+√4+1√4+√5+...+1√2024+√2025⇒2A>11+2+12+3+13+4+14+5+...+12024+2025
⇒2A>√2−√1+√3−√2+√4−√3+...+√2025−√2024⇒2A>2−1+3−2+4−3+...+2025−2024
⇒2A>√2025−√1=44⇒2A>2025−1=44
⇒A>22⇒A>22
P=[(1-2)+(-3+4)+(5-6)+(-7+8)+...+(993-994)+(-995+996)]+997
P=[(-1)+1+(-1)+1+...+(-1)+1+(-1)+1]+997
P= 0 +0 +...+ 0 +997
P=997
\(A=1-2+3-4+5-6+7-8+...+99-100\)
\(A=\left(-1\right)+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(A=\left(-1\right).50\)
\(A=-50\)
\(B=1+3-5-7+9+11-...-397-399\)
\(B=1-2+2-2+2-...+2-2-399\)
\(B=1-399\)
\(B=-398\)
\(C=1-2-3+4+5-6-7+...+97-98-99+100\)
\(C=-1+1-1+1-...-1+1\)
\(C=0\)
\(D=2^{2024}-2^{2023}-...-1\)
\(D=2^{2024}-\left(2^0+2^1+2^2+...2^{2023}\right)\)
\(D=2^{2024}-\left(\dfrac{2^{2024}-1}{2-1}\right)\)
\(D=2^{2024}-\left(2^{2024}-1\right)\)
\(D=2^{2024}-2^{2024}+1\)
\(D=1\)
A = 1 - 2 + 3 - 4 + 5 - 6 + 7 - 8 +...+ 99 - 100
A = (1 - 2) + ( 3 - 4) + ( 5- 6) +....+(99 - 100)
Xét dãy số 1; 3; 5;...;99
Dãy số trên là dãy số cách đều có khoảng cách là: 3 - 1 = 2
Dãy số trên có số số hạng là: (99 - 1) : 2 + 1 = 50 (số)
Vậy tổng A có 50 nhóm, mỗi nhóm có giá trị là: 1- 2 = -1
A = - 1\(\times\)50 = -50
b,
B = 1 + 3 - 5 - 7 + 9 + 11-...- 397 - 399
B = ( 1 + 3 - 5 - 7) + ( 9 + 11 - 13 - 15) + ...+( 393 + 395 - 397 - 399)
B = -8 + (-8) +...+ (-8)
Xét dãy số 1; 9; ...;393
Dãy số trên là dãy số cách đều có khoảng cách là: 9-1 = 8
Dãy số trên có số số hạng là: ( 393 - 1): 8 + 1 = 50 (số hạng)
Tổng B có 50 nhóm mỗi nhóm có giá trị là -8
B = -8 \(\times\) 50 = - 400
c,
C = 1 - 2 - 3 + 4 + 5 - 6 +...+ 97 - 98 - 99 +100
C = ( 1 - 2 - 3 + 4) + ( 5 - 6 - 7+ 8) +...+ ( 97 - 98 - 99 + 100)
C = 0 + 0 + 0 +...+0
C = 0
d, D = 22024 - 22023- ... +2 - 1
2D = 22005- 22004 + 22003+...- 2
2D + D = 22005 - 1
3D = 22005 - 1
D = (22005 - 1): 3
1-2+3-4+5-6+7-8+...+2023-2024
\(=\left(1-2\right)+\left(3-4\right)+\left(5-6\right)+\left(7-8\right)+....+\left(2023-2024\right)\)
\(=-1+\left(-1\right)+\left(-1\right)+\left(-1\right)+...+\left(-1\right)\)
\(=-1.1012\)
\(=-1012\)
Tổng = (số phần tử đầu + số phần tử cuối) * số phần tử / 2
Ở đây, số phần tử là (2024 - 1) / 2 + 1 = 1012
Tổng = (1 + 2024) * 1012 / 2 = 1025 * 1012 = 1038100
xem lại đề bài đi em nhé