K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4

A = \(\dfrac{2n+6}{n-3}\) + \(\dfrac{3n-5}{n-3}\) - \(\dfrac{4n}{n-3}\) (đk n ≠ 3)

A = \(\dfrac{2n+6+3n-5-4n}{n-3}\)

A = \(\dfrac{\left(2n+3n-4n\right)+\left(6-5\right)}{n-3}\)

A = \(\dfrac{n+1}{n-3}\)

Gọi ƯCLN(n +1; n - 3) = d

Ta có: \(\left\{{}\begin{matrix}n+1⋮d\\n-3⋮d\end{matrix}\right.\)

            (n + 1)  - (n - 3) ⋮ d

            n + 1  - n + 3 ⋮ d

                              4 ⋮ d

       d \(\in\) {1; 4}

Để A tối giản thì n -  3 không chia hết cho 4

                         n - 3 ≠ 4k

                         n ≠ 4k+3

Vậy với n ≠ 4k + 3 thì A là phân số tối giản. 

11 tháng 5 2022

a, \(A=\dfrac{5n-4-4n+5}{n-3}=\dfrac{n+1}{n-3}=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\Rightarrow n-3\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-31-12-24-4
n42517-1

 

11 tháng 5 2022

a.\(A=\dfrac{2n+1}{n-3}+\dfrac{3n-5}{n-3}-\dfrac{4n-5}{n-3}\)

\(A=\dfrac{2n+1+3n-5-4n+5}{n-3}\)

\(A=\dfrac{n+1}{n-3}\)

\(A=\dfrac{n-3}{n-3}+\dfrac{4}{n-3}\)

\(A=1+\dfrac{4}{n-3}\)

Để A nguyên thì \(\dfrac{4}{n-3}\in Z\) hay \(n-3\in U\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

n-3=1 --> n=4

n-3=-1 --> n=2

n-3=2 --> n=5

n-3=-2 --> n=1

n-3=4 --> n=7

n-3=-4 --> n=-1

Vậy \(n=\left\{4;2;5;7;1;-1\right\}\) thì A nhận giá trị nguyên

b.hemm bt lèm:vv

12 tháng 4 2023

Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )

n +1 = 2n + 2 (1) ; 2n+3*)   (2)

Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1

vậy ta có đpcm 

gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )

3n +2 = 15 n + 10 (1)  ; 5n + 3 =15n + 9 (2)

lấy (!) - (2)  ta được  15n + 10 - 15n - 9 = 1:d => d = 1

Vậy ta có đpcm 

27 tháng 4 2023

Làm rõ chi tiết chút nha mọi người help em 1 mạng đi 

a: Để A nguyên thì \(2n+1\inƯ\left(10\right)\)

mà n nguyên

nên \(2n+1\in\left\{1;-1;5;-5\right\}\)

=>\(n\in\left\{0;-1;2;-3\right\}\)

b: B nguyên thì 3n+5-5 chia hết cho 3n+5

=>\(3n+5\inƯ\left(-5\right)\)

mà n nguyên

nên \(3n+5\in\left\{-1;5\right\}\)

=>n=-2 hoặc n=0

c: Để C nguyên thì 4n-6+16 chia hết cho 2n-3

=>\(2n-3\in\left\{1;-1\right\}\)

=>\(n\in\left\{2;1\right\}\)

Bài 2: 

a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)

\(=\dfrac{4+6-3}{n-1}\)

\(=\dfrac{7}{n-1}\)

Để A là số tự nhiên thì \(7⋮n-1\)

\(\Leftrightarrow n-1\inƯ\left(7\right)\)

\(\Leftrightarrow n-1\in\left\{1;7\right\}\)

hay \(n\in\left\{2;8\right\}\)

Vậy: \(n\in\left\{2;8\right\}\)

27 tháng 3 2021

ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2                                                   Để B là STN thì 4n+10⋮n+2                          4n+8+2⋮n+2                                  4n+8⋮n+2                                                      ⇒2⋮n+2                                     n+2∈Ư(2)                                                        Ư(2)={1;2}                                  Vậy n=0                                                                                  

4 tháng 4 2017

Làm luôn nha không ghi đề xin lỗi

a)A=\(\dfrac{2.n+1+3.n+5-4.n+5}{n-3}\)

A=\(\dfrac{5.n+6-4.n+5}{n-3}\)

A=\(\dfrac{n+1}{n-3}\)

A=\(\dfrac{n-3+4}{n-3}\)

A=\(\dfrac{n-3}{n-3}\)+\(\dfrac{4}{n-3}\)

A=1+\(\dfrac{4}{n-3}\)

Để A nguyên thì 4\(⋮\)n-3 hay n-3\(\in\)Ư(4).Ta có bảng sau:

n-3 1 2 4 -1 -2 -4
n 4 5 7 2 1

-1

Vậy n\(\in\){ 4;5;7;2;1;-1)

b)Ta có A=\(\dfrac{n+1}{n-3}\)

Gọi ước nguyên tố của n+1 và n-3 là d

Ta có n+1\(⋮\)d

n+3\(⋮\)d

\(\Rightarrow\)n-3-n-1\(⋮\)d

\(\Rightarrow\)4\(⋮\)d

Vì d là ước nguyên tố nên d=2

Ta có n+1\(⋮\)d

n-3\(⋮\)d

\(\Rightarrow\)n+1-2\(⋮\)d

n-1\(⋮\)2

\(\Rightarrow\)n=2.k+1

Vậy n\(\ne\)2.k+1 hay n là số chẵn thì A là phân số tối giản

4 tháng 4 2017

Lý giải câu b vì sao lại ước nguyên tố :Do là phân số tối giản nên số nguyên tố sẽ không chia hết cho bất kì số nào nên mới làm A tối giản được

Có hiểu không bạn,chắc không hiểu

25 tháng 4 2023

ko nhìn ra

 

28 tháng 1 2022

Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*) 

\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)

Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)

\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)

Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)

Vậy ta có đpcm 

28 tháng 1 2022

a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)

\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)

\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\in\left\{1;2\right\}\)

Mà 2n+3 là số lẻ nên

\(\Rightarrow d=1\left(đpcm\right)\)

c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)

Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)

\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)

\(\Rightarrow d=1\left(đpcm\right)\)

AH
Akai Haruma
Giáo viên
17 tháng 4 2022

Lời giải:

a/

Gọi ƯCLN(n+1, 2n+3)=d$ 

Khi đó:

$n+1\vdots d\Rightarrow 2n+2\vdots d(1)$

$2n+3\vdots d(2)$

Từ $(1); (2)\Rightarrow (2n+3)-(2n+1)\vdots d$ hay $1\vdots d$

$\Rightarrow d=1$
Vậy $n+1, 2n+3$ nguyên tố cùng nhau nên phân số đã cho tối giản. 

Câu b,c làm tương tự.

18 tháng 7 2021

mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé

Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)

Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên 

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n - 21-15-5
n317-3