K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

loading...  loading...  loading...  loading...  loading...  loading...  

a: Xét ΔABC có

AI,BE,CF vừa là trung tuyến vừa đồng quy tại G

=>G là trọng tâm của ΔABC

=>BG=2GE; CG=2GFl AG=2GI

=>BG=GN; CG=GP; AG=GM

Gọi O là giao của PM và BG

Xét tứ giác ABMN có

G là trung điểm chung của AM và BN

=>ABMN là hình bình hành

=>AN=BM

Xét tứ giác APMC có

G là trung điểm của AM và PC

=>APMC là hình bình hành

=>AP=MC

Xét tứ giác BPNC có

G là trung điểm chung của BN và PC

=>BPNC là hình bình hành

=>BP=NC và NP=BC

Xet ΔMNP và ΔABC có

MN=AB

NP=BC

MP=AC

=>ΔMNP=ΔABC

b: Xét tứ giác BPGM có

GP//BM

GP=BM

=>BPGM là hình bình hành

=>O là trung điểm của BG và PM

=>BO=OG=GE=EN

=>NG=2/3NO

Xét ΔMNP có

NO là trung tuyến

NG=2/3NO

=>G là trọng tâm của ΔMNP

a) Xét ΔGDB và ΔMDC có 

DG=DM(gt)

\(\widehat{GDB}=\widehat{MDC}\)(hai góc đối đỉnh)

DB=DC(D là trung điểm của BC)

Do đó: ΔGDB=ΔMDC(c-g-c)

Suy ra: \(\widehat{DGB}=\widehat{DMC}\)(hai góc tương ứng)

mà \(\widehat{DGB}\) và \(\widehat{DMC}\) là hai góc ở vị trí so le trong

nên BG//MC(Dấu hiệu nhận biết hai đường thẳng song song)

hay CM//BE(Đpcm)

14 tháng 6 2020

tự kẻ hình nghen:33333

a) vì AD cắt BE tại G mà AD, BE là hai đường trung tuyến=> G là trọng tâm của tam giác ABC

=> EG=1/3BE, BG=2/3BE

=> GD=1/3AD, AG=2/3AD

=> EG+EN=2*1/3BE (GE=EN)=> GN=2/3BE=> GN=BG=2/3BE

=> GD+DM=2*1/3AD (GD=DM)=> GM=2/3AD=> GM=AG=2/3AD

b) xét tam giác AGB và tam giác MGN có

GN=BG(cmt)

GM=AG(cmt)

AGB=MGN( đối đỉnh)

tam giác AGB=tam giác MGN (cgc)

MN=AB( hai cạnh tương ứng)

=> BAG=GMN( hai góc tương ứng)

mà BAG so le trong với GMN=> AB//MN

a: Xét tứ giác BGCN có 

D là trung điểm của đường chéo BC

D là trung điểm của đường chéo GN

Do đó: BGCN là hình bình hành

21 tháng 9 2023

Tham khảo:

a) Xét tam giác BGM và tam giác CEM có :

\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)

GM = ME (do G đối xứng E qua M)

MB = MC (do M là trung điểm của BC)

\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)

\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)

Mà 2 góc trên ở vị trí so le trong nên BG⫽CE

b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE

Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE

Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE

\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)

Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF

\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)

\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)

\( \Rightarrow \) AF = 2 FI

a: Xét ΔEAB và ΔECF có

EA=EC
góc AEB=góc CEF

EB=EF
=>ΔEAB=ΔECF

b: ΔEAB=ΔECF

=>AB=CF<BC

c: góc EBA=góc EFC

góc EFC>góc EBC

=>góc EBA>góc EBC

1 tháng 4 2016
  • A B C G D M 1 2 A B C D T E 2 1

ôi zời ghi từng bài thôi!!!!!!1

Cậu vẽ cái hình ra đi mk ko làm đc rồi Khó quá