K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2023

Tham khảo:

a) Xét tam giác BGM và tam giác CEM có :

\(\widehat {GMB} = \widehat {EMC}\)(2 góc đối đỉnh)

GM = ME (do G đối xứng E qua M)

MB = MC (do M là trung điểm của BC)

\( \Rightarrow \Delta BGM = \Delta CEM(c - g - c)\)

\( \Rightarrow \widehat {GBM} = \widehat {MCE}\)(2 góc tương ứng bằng nhau)

Mà 2 góc trên ở vị trí so le trong nên BG⫽CE

b) Vì I là trung điểm BE nên AI sẽ là trung tuyến của tam giác ABE

Và BG cũng là trung tuyến của tam giác ABE do G là trung điểm AE

Vì BG cắt AI tại F nên F sẽ là trọng tâm của tam giác ABE

\(\, \Rightarrow AF = \dfrac{2}{3}AI\)(định lí về trọng tâm tam giác)

Mà AI = AF + FI \( \Rightarrow \) FI = AI – AF

\( \Rightarrow FI = AI - \dfrac{2}{3}AI = \dfrac{1}{3}AI\)

\( \Rightarrow 2FI = AF = \dfrac{2}{3}AI\)

\( \Rightarrow \) AF = 2 FI

a: Xet ΔBMG và ΔCME có

MB=MC

góc BMG=góc CME

MG=ME

=>ΔBMG=ΔCME
b: Xet tứ giác BGCE co

M là trung điểm chung của BC và GE

=>BGCE là hình bình hành

=>BG//CE

c: Xét ΔABE co

AI,BG là trung tuyến

AI cắt BG tại F

=>F là trọng tâm

=>E,F,N thẳng hàng

a: Xét ΔMBA và ΔMCE có

MB=MC

góc BMA=góc CME

MA=ME

=>ΔMBA=ΔMCE

b: Xét tứ giác ABEC có

M là trung điểm chung của AE và BC

=>ABEC là hình bình hành

=>BE//AC

a: Xét tứ giác BGCD có

M là trung điểm chung của BC và GD

=>BGCD là hình bình hành

=>BG//CD

1 tháng 7 2020

Ko  có hình làm sao bạn

1 tháng 7 2020

A B C G N M N K

a. Xét tam giác ABM và tam giác ACN có 

               góc A chung

              AB = AC [ vì tam giác ABC cân ]

             AM = AN [ \(AM=AN=\frac{AB}{2}=\frac{AC}{2}\)]

Do đó ; tam giác ABM = tam giác ACN [ c.g.c ]

b.Xét tam giác ANG và tam giác BNK có 

              NG = NK

             góc ANG = góc BNK [ đối đỉnh ]

            AN = BN [ vì N là tđ' của AB ]

Do đó ; tam giác ANG = tam giác BNK [ c.g.c ]

\(\Rightarrow\)góc AGN = góc BKN [ ở vị trí so le trong ]

\(\Rightarrow\)AG // BK 

a: Xét ΔBIE và ΔMIA có

\(\widehat{IEB}=\widehat{IAM}\)(hai góc so le trong, BE//AM)

IE=IA

\(\widehat{BIE}=\widehat{MIA}\)(hai góc đối đỉnh)

Do đó: ΔBIE=ΔMIA

=>BE=AM

b: Xét ΔIAN và ΔIEC có

IA=IE

\(\widehat{AIN}=\widehat{EIC}\)(hai góc đối đỉnh)

IN=IC

Do đó: ΔIAN=ΔIEC

=>\(\widehat{IAN}=\widehat{IEC}\)

mà hai góc này là hai góc ở vị trí so le trong

nên AN//EC

Ta có: AN//EC

AM//EC

AN,AM có điểm chung là A

Do đó: N,A,M thẳng hàng

16 tháng 10 2018

28 tháng 6 2019

∆ABC cân tại A, AM là đường trung tuyến ứng với cạnh đáy BC nên AM cũng là đường trung trực của BC.

D là giao điểm của các đường trung trực AC và BC nên D thuộc trung trực của AB.

Vậy DA = DB (tính chất đường trung trực).

A D B M C

28 tháng 6 2019

2 1 1 1 2 I F A D E C M B

a) Ta có: Đường trung trực của đoạn thẳng AC cắt cắt BC tại F

=> F thuộc đường trung trực của đoạn thẳng AC

=> FA=FC

=> Tam giác ACF cân tại F

Xét tam giác AFC có: FE và AM là hai đường cao cắt nhau tại I

=> I là trực tâm của tam giác AFC

=> CI vuông góc AF

b) Ta có: Tam giác FAC cân tại F

=> \(\widehat{A_1}=\widehat{C_1}\)

Tam giác ABC cân tại A

=> \(\widehat{B_1}=\widehat{C_1}\)

=> \(\widehat{A_1}=\widehat{B_1}\)(1)

Mà \(\widehat{A_1}+\widehat{A_2}=180^o\)( kề bù) (2)

và \(\widehat{B_1}+\widehat{B_2}=180^o\) ( kề bù) (3)

Từ (1), (2), (3) => \(\widehat{A_2}=\widehat{B_2}\)

Xét tam giác ABF và tam giác CAD

có: AB=AC ( tam giác ABC cân)

\(\widehat{A_2}=\widehat{B_2}\)( chứng minh trên)

BF=AD ( giả thiết)

=> Tam giác ABF = tam giác CAD

=> \(\widehat{D}=\widehat{F}\)

=> Tam giác CFD cân tại D

c) CD vuông CF

=> Tam giác CFD vuông cân

=> \(\widehat{AFC}=\widehat{DFC}=45^o\)

Xét tam giác AFC cân tại F

=> \(\widehat{C_1}+\widehat{A_1}+\widehat{AFC}=180^o\Rightarrow\widehat{C_1}=\widehat{A_1}=\frac{180^o-45}{2}=67,5^o\)

Xét tam giác ABC cân tại A

=> \(\widehat{C_1}=\widehat{B_1}=67,5^o\)

=> \(\widehat{A}=45^o\)

Điều kiện của tam giác ABC là cân tại A và góc A bằng 45 độ