Cho tam giác ABC, M là một điểm bất kì thuộc đường tròn tâm O ngoại tiếp tam giác ấy .Gọi D là điểm đối xứng với M qua AB, E là điểm đối xứng với M qua BC. Chứng minh rằng khi M di chuyển trên (O) thì DE luôn đi qua một điểm cố định
Help mik với
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1). Gọi S điểm đối xứng với P qua M.Theo tính chất đối xứng của hình thang cân dễ thấy tứ giác ABSP cũng là hình thang cân.
Ta lại có Q P S ^ = Q A B ^ = Q R B ^ .
Từ đó có E P Q ^ = E R P ^ ⇒ Δ E R P ∽ Δ E P Q (g – g),
nên E Q P ^ = E P R ^ = B P S ^ = A S E ^ , suy ra tứ giác AEQS nội tiếp.
Do đó P A . P Q = P E . P S = P F 2 .2 P M = P F . P M , suy ra tứ giác A M Q F nội tiếp.
Từ đó suy ra đường tròn ngoại tiếp tam giác △ A Q F luôn đi qua M.
Ta có NHC = ABC (cùng phụ với HCB) (1)
Vì ABDC là tứ giác nội tiếp nên ABC = ADC (2)
Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra
∆ADC = ∆AEC (c.c.c) => ADC = AEC (3)
Tương tự ta có AEK = ADK
Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o
Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)
Tứ giác AOBM có các đường chéo cắt nhau tại trung điểm của mỗi đường nên là hình bình hành suy ra :
BM // OA, BM = OA (1)
Chứng minh tương tự ta có :
NC // OA, NC = OA (2)
Từ (1) và (2) suy ra BM // NC, BM = NC
Vậy MNCB là hình bình hành
a: Xét tứ giác OAMB có
D là trung điểm của AB
D là trung điểm của OM
Do đó: OAMB là hình bình hành
1). Vì MP là đường kính suy ra P N ⊥ M N (1).
Vì MD là đường kính suy ra D N ⊥ M N (2).
Từ (1) và (2), suy ra N; P; D thẳng hàng.
Chú ý góc APC = góc AMC ( t/c đối xứng)
Mà góc AMC = Góc ABC
Chú ý : CH vuông góc AB
Từ đây có ngay kết quả nhe
1). Ta có góc nội tiếp bằng nhau B D M ^ = B C F ^ ( 1 ) và B M A ^ = B F A ^ suy ra 180 0 − B M A ^ = 180 0 − B F A ^ hay B M D ^ = B F C ^ (2).
Từ (1) và (2), suy ra Δ B D M ~ Δ B C F (g - g).
Mình gửi trả lời rồi đó mà nó chưa duyệt lên. Bạn vào trang cá nhân của mình xem nhé.