Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi I, K lần lượt là trung điểm của AP và DP. Ta có :
IK song song và bằng 1/2 AD hay bằng 1/2 BC.
KM = DM - DK = DC/2 - DP / 2 = PC/2
Mà \(\widehat{IKM}=\widehat{ADC}=\widehat{BCP}\)
\(\Rightarrow\Delta IKM\sim\Delta BCP\left(c-g-c\right)\Rightarrow\widehat{BPC}=\widehat{IMP}\)
Mà \(\widehat{BPC}=\widehat{ABP}\) (AB // PC) ; \(\widehat{ABP}=\widehat{AQR}\) (Hai góc nội tiếp cùng chắn cung AR)
Do đó \(\widehat{IME}=\widehat{IQE}\Rightarrow\) Tứ giác IMQE nội tiếp.
\(\Rightarrow\widehat{EIQ}=\widehat{EMQ}\)
Mà IE // AF (Đường trung bình) nên \(\widehat{IEQ}=\widehat{FAQ}\) (Đồng vị)
\(\Rightarrow\widehat{FAQ}=\widehat{FMQ}\) hay tứ giác AMQF nội tiếp.
Do đó đường tròn ngoại tiếp tam giác AQF đi qua A, M cố định.
Vậy tâm đường tròn thuộc đường trung trực của AM.
b) Ta có \(\widehat{EPR}=\widehat{BPC}=\widehat{ABP}=\widehat{AQE}\) nên \(\Delta EPR\sim\Delta EQP\left(g-g\right)\Rightarrow\frac{EP}{EQ}=\frac{ER}{EP}\Rightarrow EP^2=ER.EQ\)
Vì AE là tiếp tuyến nên \(\widehat{EAR}=\widehat{AQE}\Rightarrow\Delta EAR\sim\Delta EQA\left(g-g\right)\Rightarrow\frac{EA}{EQ}=\frac{ER}{EA}\Rightarrow EA^2=EQ.ER\)
\(\Rightarrow EP^2=EA^2\Rightarrow EP=EA=EF\)
\(\Rightarrow\widehat{FAP}=90^o\Rightarrow\widehat{FMQ}=90^o\) (Hai góc nội tiếp cùng chắn cung FQ)
\(\Rightarrow MQ\perp CD\)
Hình nếu chị không vẽ được thì hỏi em nhé chị !
Gọi I là trung điểm của BC => I cố định ( vì B,C cố định )
Ta có : AG = 2.OI ( theo bổ đề 7 )
Lại có AM = AH nên AM = 2.OI ( 1 )
Trên tia IO lấy điểm K sao cho OK = 2. OI ( 2 )
=> K cố định ( vì O,I cố định )
Từ ( 1 ) ( 2 ) => AM = KO mà AM// KO
( vì cùng vuông góc với BC ) .
Do đó AMKO là hình bình hành nên KM = OA = R : không đổi
Vậy khi A thay đổi trên cung lớn BC thì điểm M đi động trên đường tròn cố định ( K ; R ) => đpcm
Huy làm có gì sai mọi người góp ý nha :3
a
Ta có 2 đường trung trực của các đoạn thẳng AM,AN cắt nhau tại I nên I là tâm đường tròn ngoại tiếp tam giác AMN
b
Hạ đường cao AK. Gọi L đối xứng với A qua K. Suy ra L cố định.Ta sẽ chứng minh tứ giác AMLN nội tiếp. Thật vậy !
Ta dễ có được đường tròn tâm I ngoại tiếp tam giác ALN
Ta có:\(\widehat{AIN}=2\widehat{ALN};\widehat{AIN}=2\widehat{AMN}\Rightarrow\widehat{ALN}=\widehat{AMN}\) nên tứ giác AMLN nội tiếp khi đó đường tròn I luôn đi qua điểm L cố định
Hình tui đã vẽ trong TKHĐ nhé :))
Mình làm ra vở cho bạn rồi nhé. Chữ mình hơi xấu, mong bạn thông cảm.
Ta có NHC = ABC (cùng phụ với HCB) (1)
Vì ABDC là tứ giác nội tiếp nên ABC = ADC (2)
Vì D và E đối xứng nhau qua AC nên AC là trung trực DE suy ra
∆ADC = ∆AEC (c.c.c) => ADC = AEC (3)
Tương tự ta có AEK = ADK
Từ (1), (2), (3) suy ra NHC = AEC => AEC + AHC = NHC + AHC = 180o
Suy ra AHCE là tứ giác nội tiếp => ACH = AEK = ADK (đpcm)
a) Ta có: ID vuông góc AM với D là trung điểm AM => ID là đường trung trực AM => IA = IM (1)
IE vuông góc AN với E là trung điểm AN => IE là đường trung trực AN => IA = IN (2)
Từ (1) và (2) => IA = IM = IN
=> I là tâm đường tròn qua 3 điểm A; M; N
b. Lấy điểm P đối xứng với điểm A qua BC => P cố định
=> BC là đường trung trực của PA mà I thuộc BC
=> IP = IA
=>( I) qua điểm P cố định khác A
a) Gọi S là điểm chính giữa của cung nhỏ BC. Do dây BC cố định nên điểm S cũng cố định. Ta đi chứng minh tiếp tuyến tại M của (MKO) luôn đi qua S.
Do S là điểm chính giữa cung nhỏ BC của (O) => SB=SC và A,I,S thẳng hàng (Vì AI là phân giác của ^BAC nội tiếp chắn cung BC)
Ta có: ^SIB là góc ngoài \(\Delta\)AIB => ^SIB = ^IBA + ^IAB = 1/2(^BAC + ^ABC)
Mà ^SBI = ^IBC + ^SBC = 1/2(^ABC + ^CAS) = 1/2(^ABC + ^BAC) nên ^SIB = ^SBI => \(\Delta\)BSI cân tại S
=> SB=SI => SB=SC=SI => S là tâm của (BIC). Ta thấy M nằm trên (BIC) nên SM = SI (1)
Dễ thấy 3 điểm S,K,O thẳng hàng (Cùng nằm trên trung trực của BC) => SKO là cắt tuyến của (OIK)
Xét đường tròn (OIK): Cát tuyến SKO, tiếp tuyến SI => SI2 = SK.SO (Hệ thức lượng trong đường tròn) (2)
Từ (1) và (2) => SM2 = SK.SO => \(\Delta\)SMK ~ \(\Delta\)SOM (c.g.c)
=> ^SMK = ^SOM = 1/2.Sđ(MK của đường tròn (MKO) => MS là tiếp tuyến của đường tròn (MKO)
Hay tiếp tuyến tại M của (MKO) luôn đi qua S cố định (đpcm).
b) Ta có: Tứ giác SIOQ nội tiếp có góc ngoài là ^AIO => ^OQS = ^AIO (*)
Theo câu a: SI2 = SK.SO => SB2 = SK.SO = SK.R (3)
Kẻ đường kính SN của đường tròn (O), BC cắt OS tại T => ^SBN = 900
=> \(\Delta\)SBN vuông tại B có đường cao BT => SB2 = ST.SN (Hệ thức lượng). Hay SB2 = ST.2R (4)
Từ (3) và (4) => SK=2.ST => T là trung điểm của SK. Tứ đó: S và K đối xứng với nhau qua BC
Mà I và H cũng đối xứng nhau qua BC nên tứ giác IKSH là hình thang cân
^OSQ = ^IHS = ^IKO =^AIO (=1/2.Sđ(OI của (IKO) ) => ^OSQ = ^AIO (**)
Từ (*) và (**) suy ra: ^OQS = ^OSQ => \(\Delta\)SOQ cân tại O => OS = OQ = R => Q thuộc (O) (đpcm).
c) Xét tứ giác SIOQ nội tiếp đường tròn có: ^OIQ = ^OSQ (Góc nội tiếp cùng chắn cung OQ)
Lại có: ^OSQ = ^AIO (cmt) nên ^OIQ = ^AIO => IO là tia phân giác của ^AIQ
Dễ dàng chỉ ra được: IA=IQ (Gợi ý: Hạ OX và OY vuông góc với IA và IQ) => \(\Delta\)AIQ cân tại I
Xét \(\Delta\)AIQ: Cân đỉnh I, tia phân giác IO (cmt) => IO đồng thời là đường cao => IO vuông góc AQ (đpcm).
d) Gọi J là giao điểm của AS với BC, E và F lần lượt là hình chiếu của O lên AC,AB. Đặt AB=c, BC=a, CA=b
Ta có: \(\Delta\)AJC ~ \(\Delta\)ABS (g.g) => AJ.AS = c.b (5)
\(\Delta\)SJB ~ \(\Delta\)SBA (g.g) => SB2 = SJ.AS (6)
Từ (5) và (6) suy ra: c.b + SB2 = AJ.AS + SJ.AS = AS2 < SN2 = 4R2 (Quan hệ giữa đường kính và dây cung)
\(\Rightarrow bc+BT^2+ST^2\le4R^2\)(ĐL Pytagore) \(\Rightarrow bc+\frac{a^2}{4}+\left(R-OT\right)^2\le4R^2\)
\(\Rightarrow bc+\frac{a^2}{4}+R^2-2R.OT+OT^2\le4R^2\)\(\Leftrightarrow bc+\frac{a^2}{4}-2R.OT+OT^2\le3R^2\)
Tương tự: \(ab+\frac{c^2}{4}-2R.OF+OF^2\le3R^2;\)\(ca+\frac{b^2}{4}-2R.OE+OE^2\le3R^2\)
Do đó: \(ab+bc+ca+\frac{a^2+b^2+c^2}{4}-2R\left(OT+OE+OF\right)+OT^2+OE^2+OF^2\le9R^2\)
Áp dụng BĐT: \(a^2+b^2+c^2\ge\frac{\left(a+b+c\right)^2}{3}\) và \(a^2+b^2+c^2\ge ab+bc+ca\) ta có:
\(ab+bc+ca+\frac{ab+bc+ca}{4}-2R\left(OT+OE+OF\right)+\frac{\left(OT+OE+OF\right)^2}{3}\le9R^2\)
\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}-2R\left(OT+OE+OF\right)+\frac{\left(OT+OE+OF\right)^2}{3}\le9R^2\)
Áp dụng ĐL Carnot cho \(\Delta\)ABC có tâm ngoại tiếp O: \(OT+OE+OF=R+r\)
Từ đó có: \(\frac{5\left(ab+bc+ca\right)}{4}-2R\left(R+r\right)+\frac{\left(R+r\right)^2}{3}\le9R^2\)
\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}\le9R^2+2R\left(R+r\right)-\frac{\left(R+r\right)^2}{3}\)
\(\Leftrightarrow\frac{5\left(ab+bc+ca\right)}{4}\le\frac{32R^2+4Rr-r^2}{3}=\frac{\left(4R+r\right)\left(8R-r\right)}{3}\)
\(\Rightarrow ab+bc+ca\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\)
Hay \(AB.BC+BC.CA+CA.AB\le\frac{4\left(4R+r\right)\left(8R-r\right)}{15}\) (đpcm).
Mình gửi trả lời rồi đó mà nó chưa duyệt lên. Bạn vào trang cá nhân của mình xem nhé.