K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)

\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)

b) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)

\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)

\(\Rightarrow4S=5^{29}-1\)

\(\Rightarrow4S+1=5^{29}-1+1\)

\(\Rightarrow4S=5^{29}=5^n\)

\(\Rightarrow n=29\)

3 tháng 9 2023

a) \(S=1+5+5^2+5^3+...+5^{28}\)

\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)

\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)

\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)

\(\Rightarrow dpcm\)

b) Bạn xem lại đề

24 tháng 1 2021

cho mik hỏi câu này nữa   a= 2+2 mũ 3 + 2 mũ 5 +.....+2 mũ 51

8 tháng 12 2020

Bài 1:

a,\(A=3+3^2+3^3+...+3^{2010}\)

\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)

\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)

\(=3.40+...+3^{2007}.40\)

\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)

Vì A chia hết cho 40 nên chữ số tận cùng của A là 0

b,\(A=3+3^2+3^3+...+3^{2010}\)

\(3A=3^2+3^3+...+3^{2011}\)

\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)

\(2A=3^{2011}-3\)

\(2A+3=3^{2011}\)

Vậy 2A+3 là 1 lũy thừa của 3

15 tháng 10 2017

s tự hỏi tự trả lời thế

15 tháng 10 2017

32 . 3n = 35

=> 2 + n = 5

=> n = 5 - 2

=> n = 3

( 22 : 4 ) . 2n = 4

( 4 : 4 ) . 2= 22

1 . 2= 22

=> n = 2

Các câu sau tự làm nhé

9 tháng 9 2017

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

10 tháng 12 2017

Thanks bạn

17 tháng 8 2018

Ta có : n + 3 = (n + 1) + 2

Do n + 1\(⋮\)n + 1

Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}

Lập bảng :

 n + 1 1  -1 2 -2
   n 0 -2 1 -3

Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1

b) Ta có : 2n + 7 = 2.(n - 3) + 13 

Do n - 3 \(⋮\)n - 3

Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ;  13}

Lập bảng :

 n - 3 1 -1 13 -13
   n 4 2 16 -10

Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3

17 tháng 8 2018

Bài 1 :

a) \(n+3⋮n+1\)

\(a+1+2⋮n+1\)

\(\Rightarrow2⋮n+1\)

\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)

n+11-12-2
n0-21-3

b) c) d) tương tự

Bài 2 :

\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)

\(A=5+4^2\cdot5+...+4^{58}\cdot5\)

\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)

Còn lại : tương tự

Bài 1:

a) \(8^5\cdot8^2=8^7\)

b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)

c) \(2^7\cdot5^7=10^7\)

d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)

Bài 2:

a) \(x^6:x^3=125\)

\(\Rightarrow x^3=125\)

\(\Rightarrow x=5\)

b) \(x^{20}=x\)

\(\Rightarrow x^{20}-x=0\)

\(\Rightarrow x\left(x^{19}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)

c) \(3^x\cdot3=243\)

\(\Rightarrow3^x=81\)

\(\Rightarrow x=4\)

d) \(2x-138=2^3\cdot3^2\)

\(\Rightarrow2x-138=72\)

\(\Rightarrow2x=200\)

\(\Rightarrow x=100\)

5 tháng 10 2017

Giải:

Bài 1:

a) \(8^5.8^2=8^{5+2}=8^7\)

b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)

c) \(2^7.5^7=\left(2.5\right)^7=10^7\)

d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)

Bài 2:

a) \(x^6:x^3=x^{6-3}=x^3=125\)

\(\Leftrightarrow x=5\)

b) \(x^{20}=x\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)

c) \(3^x.3=243\)

\(\Leftrightarrow3^{x+1}=243\)

\(\Leftrightarrow3^{x+1}=3^5\)

\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)

d) \(2.x-138=2^3.3^2\)

\(\Leftrightarrow2.x-138=8.9\)

\(\Leftrightarrow2.x-138=72\)

\(\Leftrightarrow2.x=72+138\)

\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)

Chúc bạn học tốt!