Chứng Tỏ
5 mũ 3*n+3-5 mu 3*n+1+5 mũ 3*n
chia hết cho 121 ;với n thuộc N
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(S=\left(1+5\right)+\left(5^2+5^3\right)+...+\left(5^{27}+5^{28}\right)\)
\(S=1\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(S=\left(1+5^2+...+5^{27}\right).6⋮3\left(dpcm\right)\)
b) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow5S=5+5^2+5^3+5^4+...+5^{29}\)
\(\Rightarrow5S-S=\left(5+5^2+5^3+5^4+...+5^{29}\right)-\left(1+5+5^2+5^3+...+5^{28}\right)\)
\(\Rightarrow4S=5^{29}-1\)
\(\Rightarrow4S+1=5^{29}-1+1\)
\(\Rightarrow4S=5^{29}=5^n\)
\(\Rightarrow n=29\)
a) \(S=1+5+5^2+5^3+...+5^{28}\)
\(\Rightarrow S=\left(1+5\right)+5^2\left(1+5\right)+...+5^{27}\left(1+5\right)\)
\(\Rightarrow S=6+5^2.6+...+5^{27}.6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮6\)
\(\Rightarrow S=6\left(1+5^2+...+5^{27}\right)⋮3\)
\(\Rightarrow dpcm\)
b) Bạn xem lại đề
Bài 1:
a,\(A=3+3^2+3^3+...+3^{2010}\)
\(=\left(3+3^2+3^3+3^4\right)+....+\left(3^{2007}+3^{2008}+3^{2009}+3^{2010}\right)\)
\(=3\left(1+3+3^2+3^3\right)+....+3^{2007}\left(1+3+3^2+3^3\right)\)
\(=3.40+...+3^{2007}.40\)
\(=40\left(3+3^5+...+3^{2007}\right)⋮40\)
Vì A chia hết cho 40 nên chữ số tận cùng của A là 0
b,\(A=3+3^2+3^3+...+3^{2010}\)
\(3A=3^2+3^3+...+3^{2011}\)
\(3A-A=\left(3^2+3^3+...+3^{2011}\right)-\left(3+3^2+3^3+...+3^{2010}\right)\)
\(2A=3^{2011}-3\)
\(2A+3=3^{2011}\)
Vậy 2A+3 là 1 lũy thừa của 3
32 . 3n = 35
=> 2 + n = 5
=> n = 5 - 2
=> n = 3
( 22 : 4 ) . 2n = 4
( 4 : 4 ) . 2n = 22
1 . 2n = 22
=> n = 2
Các câu sau tự làm nhé
*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)
\(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)
\(=6\times\left(2^2+2^3+...+2^{2008}\right)\)
\(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)
\(\Rightarrow A⋮3\)
*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)
\(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)
\(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)
\(\Rightarrow A⋮7\)
Mình sửa lại đề C 1 chút xíu
*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)
\(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)
\(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)
\(\Rightarrow C⋮4\)
Các câu khác làm tương tự nhé. Chúc bạn học tốt!
Ta có : n + 3 = (n + 1) + 2
Do n + 1\(⋮\)n + 1
Để n + 3 \(⋮\)n + 1 thì 2 \(⋮\)n + 1 => n + 1 \(\in\)Ư(2) = {1; -1; 2; - 2}
Lập bảng :
n + 1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
Vậy n \(\in\){0; -2; 1; -3} thì n + 3 \(⋮\)n + 1
b) Ta có : 2n + 7 = 2.(n - 3) + 13
Do n - 3 \(⋮\)n - 3
Để 2n + 7 \(⋮\)n - 3 thì 13 \(⋮\)n - 3 => n - 3 \(\in\)Ư(13) = {1; -1; -13 ; 13}
Lập bảng :
n - 3 | 1 | -1 | 13 | -13 |
n | 4 | 2 | 16 | -10 |
Vậy n \(\in\){4; 2; 16; -10} thì 2n + 7 \(⋮\)n - 3
Bài 1 :
a) \(n+3⋮n+1\)
\(a+1+2⋮n+1\)
\(\Rightarrow2⋮n+1\)
\(\Rightarrow n+1\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
n+1 | 1 | -1 | 2 | -2 |
n | 0 | -2 | 1 | -3 |
b) c) d) tương tự
Bài 2 :
\(A=5+4^2\cdot\left(1+4\right)+...+4^{58}\cdot\left(1+4\right)\)
\(A=5+4^2\cdot5+...+4^{58}\cdot5\)
\(A=5\cdot\left(1+4^2+...+4^{58}\right)⋮5\)
Còn lại : tương tự
Bài 1:
a) \(8^5\cdot8^2=8^7\)
b) \(9^3\cdot3^2=\left(3^2\right)^3\cdot3^2=3^6\cdot3^2=3^8\)
c) \(2^7\cdot5^7=10^7\)
d) \(27^6:3^3=\left(3^3\right)^6:3^3=3^{18}:3^3=3^{15}\)
Bài 2:
a) \(x^6:x^3=125\)
\(\Rightarrow x^3=125\)
\(\Rightarrow x=5\)
b) \(x^{20}=x\)
\(\Rightarrow x^{20}-x=0\)
\(\Rightarrow x\left(x^{19}-1\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x^{19}-1=0\Rightarrow x=1\end{matrix}\right.\)
c) \(3^x\cdot3=243\)
\(\Rightarrow3^x=81\)
\(\Rightarrow x=4\)
d) \(2x-138=2^3\cdot3^2\)
\(\Rightarrow2x-138=72\)
\(\Rightarrow2x=200\)
\(\Rightarrow x=100\)
Giải:
Bài 1:
a) \(8^5.8^2=8^{5+2}=8^7\)
b) \(9^3.3^2=3^6.3^2=3^{6+2}=3^8\)
c) \(2^7.5^7=\left(2.5\right)^7=10^7\)
d) \(27^6:3^3=3^{18}:3^3=3^{18-3}=3^{15}\)
Bài 2:
a) \(x^6:x^3=x^{6-3}=x^3=125\)
\(\Leftrightarrow x=5\)
b) \(x^{20}=x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-1\\x=1\end{matrix}\right.\)
c) \(3^x.3=243\)
\(\Leftrightarrow3^{x+1}=243\)
\(\Leftrightarrow3^{x+1}=3^5\)
\(\Leftrightarrow x+1=5\Leftrightarrow x=4\)
d) \(2.x-138=2^3.3^2\)
\(\Leftrightarrow2.x-138=8.9\)
\(\Leftrightarrow2.x-138=72\)
\(\Leftrightarrow2.x=72+138\)
\(\Leftrightarrow2.x=210\Leftrightarrow x=105\)
Chúc bạn học tốt!