tìm giá trị nhỏ nhất của biểu thức A= 4x-x^2. trân tọng cảm ơn nhg bạn muốn giúp mình . hăy giúp mình giải nhanh nhất có thể nhoa ///// kamsahamnhita
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b) \(M=\frac{x^2+1}{x-1}=\frac{x^2-1}{x-1}+\frac{2}{x-1}=\frac{\left(x-1\right)\left(x+1\right)}{x-1}+\frac{2}{x-1}=x+1+\frac{2}{x-1}\)
Áp dụng bđt Cô si cho 2 số dương ta được: \(x-1+\frac{2}{x-1}\ge2\sqrt{\left(x-1\right).\frac{2}{x-1}}=2\sqrt{2}\)
=>\(M=x+1+\frac{2}{x-1}\ge2\sqrt{2}+2\)
Dấu "=" xảy ra khi \(x=\sqrt{2}+1\)
c) \(N=\left(x-1\right)\left(x+5\right)\left(x^2+4x+5\right)=\left(x^2+4x-5\right)\left(x^2+4x+5\right)=\left(x^2+4x\right)^2-25\)
\(\left(x^2+4x\right)^2\ge0\Rightarrow\left(x^2+4x\right)^2-25\ge-25\)
Dấu "=" xảy ra khi (x2+4x)2=0 <=> x2+4x=0 <=> x(x+4)=0 <=> x=0 hoặc x=-4
\(A=\left(x+2\right)^2+\left|x+2\right|+15\)
Ta có:
\(\left(x+2\right)^2\ge0\forall x\)
\(\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|\ge0\forall x\)
\(\Rightarrow\left(x+2\right)^2+\left|x+2\right|+15\ge15\forall x\)
\(\Rightarrow A\ge15\)Dấu bằng xảy ra.
\(\Leftrightarrow x+2=0\Leftrightarrow x=-2\)
Vậy \(minA=15\Leftrightarrow x=-2\)
`x^2+x+1=x^2+x+1/4+3/4=(x+1/2)^2 +3/4`
Vì `(x+1/2)^2 >= 0` với mọi `x`
`=>(x+1/2)^2 +3/4 >= 3/4` với mọi `x`
`=>` Biểu thức Min `=3/4<=>x=-1/2`
_____________
`(x-3)(x+5)+4=x^2+2x-11=x^2+2x+1-12=(x+1)^2-12`
Vì `(x+1)^2 >= 0` với mọi `x`
`=>(x+1)^2-12 >= -12` với mọi `x`
`=>` Biểu thức Min `=-1/2<=>x=-1`
Bài 2:
a) Ta có: \(\left|2x-5\right|\ge0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|\le0\forall x\)
\(\Leftrightarrow-\left|2x-5\right|+3\le3\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
A= 4x-x2= - [ ( x2-4x+4) -4] = 4-(x-2)2 \(\ge\)4 Min A=4 dấu = xảy ra khi x-2=0 \(\Leftrightarrow\)x=2