Hãy tìm a b c d e f Sao cho tổng mỗi hàng nỗi cột và trong 2 đường chéo bằng nhau
Ai làm nhanh đúng mình xe tick cho
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Tổng các số trong bảng = Tổng các hàng
Mà tổng các hàng bằng 0 nên tổng các số trong bảng đó bằng 0.
b) Xét hàng số 1 ta có:
a + (-2) + (-1) = 0 => a + (-3) = 0 => a = 3
Xét cột số 1 ta có:
3 + (-4) + d = 0 => (-1) + d = 0 => d = 1.
Xét đường chéo chứa b và d có:
(-1) + b + d = 0 => (-1) + b +1 = 0 => b = 0.
Xét cột số 2 ta có:
(-2) + 0 + e = 0 => e = 2
Xét dòng số 2 có:
-4 + b + c = 0 => -4 + 0 + c = 0 => c =4
Xét dòng số 3 có:
d + e + g = 0 => 1 + 2 + g = 0 => g = -3
Tổng các số ở trong bảng là : 1 + (–1) + 2 + (–2) + 3 + (–3) + 0 + 4 + 5 = 9.
Tổng các số trên mỗi hàng, mỗi cột bằng nhau nên tổng các số ở mỗi hàng, mỗi cột bằng : 9 : 3 = 3.
Do đó: 5 + 0 + (c) = 3, suy ra (c) = 3 – 0 – 5 = –2.
4 + (e) + (c) = 3, suy ra (e) = 3 – 4 – (c) = 3 – 4 – (–2) = 1.
5 + (d) + (e) = 3, suy ra (d) = 3 – 5 – (e) = 3 – 5 – 1 = –3.
4 + (d) + (a) = 3, suy ra (a) = 3 – 4 – (d) = 3 – 4 – (–3) = 2.
4 + (g) + 0 = 3, suy ra (g) = 3 – 4 – 0 = –1.
(a) + (b) + (c) = 3, suy ra (b) = 3 – (a) – (c) = 3 – 2 – (–2) = 3.
Vậy ta có bảng:
2 | 3 | –2 |
–3 | 1 | 5 |
4 | –1 | 0 |
Tổng của đường chéo thứ nhất là 8 + 2 + 5 = 15.
Do đó ta phải điền các số sao cho tổng mỗi dòng, mỗi cột đều bằng 15.
Ở cột thứ 3 : 2 + (d) + 6 = 15 ⇒ (d) = 15 – 2 – 6 = 7.
Ở dòng thứ 2: (c) + 5 + (d) = 15 ⇒ (c) = 15 – 5 – (d) = 15 – 5 – 7 = 3.
Ở dòng thứ 3: 8 + (e) + 6 = 15 ⇒ (e) = 15 – 8 – 6 = 1.
Ở cột thứ 1: (a) + (c) + 8 = 15 ⇒ (a) = 15 – 8 – c = 15 – 8 – 3 = 4.
Ở cột thứ 2: (b) + 5 + (e) = 15 ⇒ (b) = 15 – 5 – (e) = 15 – 5 – 1 = 9.
Vậy ta có bảng hoàn chỉnh sau:
4 | 9 | 2 |
3 | 5 | 7 |
8 | 1 | 6 |
A ; B ; C ; D ; E ; G lần lượt là 15 ; 17 ; 14 ; 12 ; 18 ;13