Tính nhanh:
1/3+1/9+1/27+1/81+1/243
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tham khảo
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
\(3A=3\cdot\left(\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}+\dfrac{1}{729}\right)\)
\(\Rightarrow3A=1+\dfrac{1}{3}+\dfrac{1}{9}+\dfrac{1}{27}+\dfrac{1}{81}+\dfrac{1}{243}\)
Lấy \(3A-A=1-\dfrac{1}{729}\)
\(\Rightarrow2A=\dfrac{728}{729}\Rightarrow A=\dfrac{364}{729}\)
A=1/3+1/9+1/27+1/81+1/243+1/729
3A=1+1/3+1/9+1/27+1/81+1/243
3A-A=(1+1/3+1/9+1/27+1/81+1/243)-(1/3+1/9+1/27+1/81+1/243+1/729)
3A-A=1-1/3+1/3-1/9+1/9-1/27+1/27-1/81+1/81-1/243+1/243-1/729)
2A=1-1/729
2A=728/729
A=728/729/2
A=364/729
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{3}{9}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{4}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{12}{27}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{13}{27}+\frac{1}{81}+\frac{1}{243}=\frac{39}{81}+\frac{1}{81}+\frac{1}{243}=\frac{40}{81}+\frac{1}{243}\)
\(=\frac{120}{243}+\frac{1}{243}=\frac{121}{243}\)
Đặt \(A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(3A-A=\left(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\right)\)
\(2A=1-\frac{1}{729}=\frac{728}{729}\)
\(A=\frac{728}{729}:2=\frac{728}{729}.\frac{1}{2}=\frac{364}{729}\)
1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
=1+ 243/729+ 81/729 + 27/729 + 9/729 + 3/729
=1093/729
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
1 + 1/3 + 1/9+1/27+1/81+1/243+1/729
=1+1-1/3+1/3-1/9+1/9-1/27-1/27-1/81+1/81-1/243
= 2 - 1/243
=485/243
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)
3 \(\times\) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)
3 \(\times\) A - A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\))
2 \(\times\) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{9}\) - \(\dfrac{1}{27}\) - \(\dfrac{1}{81}\) - \(\dfrac{1}{243}\)
2 \(\times\) A = (1 - \(\dfrac{1}{243}\)) + (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{9}\)-\(\dfrac{1}{9}\))+(\(\dfrac{1}{27}\) - \(\dfrac{1}{27}\)) + (\(\dfrac{1}{81}\) - \(\dfrac{1}{81}\))
2 \(\times\) A = 1 - \(\dfrac{1}{243}\)
A = ( 1 - \(\dfrac{1}{243}\)) : 2
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{486}\)
A = \(\dfrac{121}{243}\)