Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt S=\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
=>3S= \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
=>3S-S=\(\left(1+\frac{1}{3}+...+\frac{1}{243}\right)-\left(\frac{1}{3}+\frac{1}{9}+...+\frac{1}{729}\right)\)
=>s=1-1/729 = 728/729
1/3+1/9+1/27+1/81+1/243+1/729=(1/3+1/9+1/81)+(1/27+1/243+1/729)=37/81+37/729=333/729+37/729=370/729
\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{3}{9}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{4}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(=\frac{12}{27}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}=\frac{13}{27}+\frac{1}{81}+\frac{1}{243}=\frac{39}{81}+\frac{1}{81}+\frac{1}{243}=\frac{40}{81}+\frac{1}{243}\)
\(=\frac{120}{243}+\frac{1}{243}=\frac{121}{243}\)
1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
=1+ 243/729+ 81/729 + 27/729 + 9/729 + 3/729
=1093/729
Đặt A = 1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729
A x 3 = 3 x (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243
A x 3 - A = 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - (1/3 + 1/9 + 1/27 + 1/81 + 1/243 + 1/729)
= 1 + 1/3 + 1/9 + 1/27 + 1/81 + 1/243 - 1/3 - 1/9 - 1/27 - 1/81 - 1/243 - 1/729
= 1 - 1/729
A x 2 = 728/729
A = 364/729
nhân cả cai phép tính đó vs 1/3 đi là = 1/3+1/9+1/81+1/243+1/729
lấy phép ban đầu trừ đi hép vừa nhân đó là chỉ còn: 1-1/729= 728/729
đặt S=1+1/3+1/9+1/27+1/81+1/243
3S=3+1+1/3+1/9+1/27+1/81
3S-S=3-1/81
TỰ TÍNH TIẾP NHA
A=1+1/3+1/3^2+......1/3^6
3A= 3 +1 + 1/3+......=1/3^5
3A-A= 3-1/3^6
A=\(\frac{3-\frac{1}{3^6}}{2}\)
A = \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\)
2 \(\times\) A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\)
2 \(\times\) A - A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - (\(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) + \(\dfrac{1}{32}\))
A = 1 + \(\dfrac{1}{2}\) + \(\dfrac{1}{4}\) + \(\dfrac{1}{8}\) + \(\dfrac{1}{16}\) - \(\dfrac{1}{2}\) - \(\dfrac{1}{4}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{16}\) - \(\dfrac{1}{32}\)
A = 1 - \(\dfrac{1}{32}\)
A = \(\dfrac{31}{32}\)
ta có :
= ( 1 + 59049 ) + ( 3 + 2187 ) + ( 9 + 6561 ) + ( 27 + 243 ) + ( 81 + 729 )
= 59050 + 2190 + 6570 + 270 + 810
= 59050 + ( 2190 + 810 ) + 6570 + 270
= 59050 + 3000 + 6570 + 270
= 59050 + ( 3000 + 6570 ) + 270
= 59050 + 9570 + 270
= 68620 + 270
= 68890
\(\text{Đặt : }A=\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
\(\Rightarrow3A=1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
\(\Rightarrow3A-A=1-\frac{1}{729}\)
\(\Rightarrow2A=\frac{728}{729}\)
\(\Rightarrow A=\frac{728}{729}:2=\frac{364}{729}\)
A = \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\)
3 \(\times\) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\)
3 \(\times\) A - A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) - (\(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) + \(\dfrac{1}{243}\))
2 \(\times\) A = 1 + \(\dfrac{1}{3}\) + \(\dfrac{1}{9}\) + \(\dfrac{1}{27}\) + \(\dfrac{1}{81}\) - \(\dfrac{1}{3}\) - \(\dfrac{1}{9}\) - \(\dfrac{1}{27}\) - \(\dfrac{1}{81}\) - \(\dfrac{1}{243}\)
2 \(\times\) A = (1 - \(\dfrac{1}{243}\)) + (\(\dfrac{1}{3}\) - \(\dfrac{1}{3}\)) + (\(\dfrac{1}{9}\)-\(\dfrac{1}{9}\))+(\(\dfrac{1}{27}\) - \(\dfrac{1}{27}\)) + (\(\dfrac{1}{81}\) - \(\dfrac{1}{81}\))
2 \(\times\) A = 1 - \(\dfrac{1}{243}\)
A = ( 1 - \(\dfrac{1}{243}\)) : 2
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{486}\)
A = \(\dfrac{121}{243}\)