Tìm hai số nguyên dương a b để biêu thức
\(\frac{1}{a}+\frac{2}{b}\)
kết quả là số nguyên
mình cần công thức
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel:
\(P=\frac{a^2}{ab+2ca}+\frac{b^2}{bc+2ab}+\frac{c^2}{ca+2bc}\ge\frac{\left(a+b+c\right)^2}{3\left(ab+bc+ca\right)}\ge1\)
Cộng thêm giả thiết abc=1, suy ra dấu "=" xảy ra khi \(a=b=c=1\)
Ta có:
\(\frac{1}{1+a}+\frac{2017}{2017+b}+\frac{2018}{2018+c}\le1\)
\(\Leftrightarrow\frac{a}{1+a}\ge\frac{2017}{2017+b}+\frac{2018}{2018+c}\ge2\sqrt{\frac{2017.2018}{\left(2017+b\right)\left(2018+c\right)}}\left(1\right)\)
Tương tự ta cũng có:
\(\hept{\begin{cases}\frac{b}{2017+b}\ge2\sqrt{\frac{2018}{\left(1+a\right)\left(2018+c\right)}}\left(2\right)\\\frac{c}{2018+c}\ge2\sqrt{\frac{2017}{\left(1+a\right)\left(2017+b\right)}}\left(3\right)\end{cases}}\)
Lấy (1), (2), (3) nhân vế theo vế rút gọi ta được
\(abc\ge2\sqrt{2017.2018}.2.\sqrt{2018}.2.\sqrt{2017}=8.2017.2018\)
a.ĐKXĐ \(\hept{\begin{cases}x\ne-3\\x\ne2\end{cases}}\)
A=\(\frac{x+2}{x+3}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{1}{x-2}\)
=\(\frac{\left(x+2\right)\left(x-2\right)-5-\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x+3\right)\left(x-2\right)}\)
=\(\frac{x-4}{x-2}\)
b. Để A >0 thì \(\frac{x-4}{x-2}\) >0 \(\Rightarrow\orbr{\begin{cases}x< 2\\x>4\end{cases}}\)
Kết hợp ĐK thì \(\orbr{\begin{cases}x< 2,x\ne-3\\x>4\end{cases}}\)
c. \(A=\frac{x-4}{x-2}=1+\frac{-2}{x-2}\)
Để A nguyên thì \(x-2\inƯ\left(-2\right)=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow x\in\left\{0,1,3,4\right\}\)
Khi thay vào A, để A dương thì \(x\in\left\{0;1\right\}\)
Vậy để A nguyên dương thì \(x\in\left\{0;1\right\}\)
Câu c, có thể nói kết hợp với điều kiện giải được trong câu b, ta tìm được \(x\in\left\{0;1\right\}\)
A:3
B:3
mình cần công thuwac hay nhiều số nữa