Cho tam giác vuông tại A, đường cao AH , biết tỉ số \(\frac{HB}{HC}=\frac{9}{16}\)và AH = 48cm. Tính độ dài các cạnh của tam giác vuông đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\dfrac{HB}{HC}=\dfrac{9}{16}\)
nên \(HB=\dfrac{9}{16}HC\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow\dfrac{9}{16}HC^2=48^2=2304\)
\(\Leftrightarrow HC^2=4096\)
hay HC=64(cm)
\(\Leftrightarrow HB=\dfrac{9}{16}\cdot64=36\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔBAC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(\left\{{}\begin{matrix}AB^2=BH\cdot BC\\AC^2=CH\cdot BC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB^2=3600\\AC^2=6400\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AB=60\left(cm\right)\\AC=80\left(cm\right)\end{matrix}\right.\)
Ta có: HB+HC=BC
nên BC=36+64=100(cm)
a: AB/AC=3/4
=>BH/CH=9/16
=>BH/9=CH/16=(BH+CH)/(9+16)=125/25=5
=>BH=45cm; CH=80cm
b: AB/AC=3/7
=>HB/HC=(3/7)^2=9/49
=>HB/9=HC/49=k
=>HB=9k; HC=49k
AH^2=HB*HC
=>9k*49k=42^2
=>k=2
=>HB=18cm; HC=98cm
c: Đặt HB/9=HC/16=k
=>HB=9k; HC=16k
AH^2=HB*HC
=>144k^2=48^2
=>k=4
=>HB=36cm; HC=64cm
BC=36+64=100cm
AB=căn 36*100=60cm
AC=căn 64*100=80cm
Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow AB^2=12^2+16^2=400\)
hay AB=20(cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=HB\cdot HC\)
\(\Leftrightarrow HC=\dfrac{AH^2}{HB}=\dfrac{12^2}{16}=\dfrac{144}{16}=9\left(cm\right)\)
Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:
\(AC^2=AH^2+HC^2\)
\(\Leftrightarrow AC^2=12^2+9^2=225\)
hay AC=15(cm)
\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)
Ta có: BC = HC + HB = 18 + 32 = 50 (cm)
Xét tam giác ABC vuông tại A, đường cao AH, ta có:
AB = \(\sqrt{BC.BH}=\sqrt{50.32}=40\)(cm)
AC = \(\sqrt{BC.HC}=\sqrt{50.18}=30\)(cm)
AH = \(\sqrt{BH.CH}=\sqrt{32.18}=24\)(cm)
=> Tam giác ABC có độ dài 3 cạnh là AB = 40cm; AC = 30cm; BC = 50cm và đường cao AH = 24cm