K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

Ta có: BC = HC + HB = 18 + 32 = 50 (cm)

Xét tam giác ABC vuông tại A, đường cao AH, ta có:

AB = \(\sqrt{BC.BH}=\sqrt{50.32}=40\)(cm)

AC = \(\sqrt{BC.HC}=\sqrt{50.18}=30\)(cm)

AH = \(\sqrt{BH.CH}=\sqrt{32.18}=24\)(cm)

=> Tam giác ABC có độ dài 3 cạnh là AB = 40cm; AC = 30cm; BC = 50cm và đường cao AH = 24cm

AH=căn 2*18=6cm

AB=căn 6^2+2^2=2*căn 10(cm)

NV
29 tháng 7 2021

\(HC-HB=9\Rightarrow HC=HB+9\)

Áp dụng hệ thức lượng:

\(AH^2=HB.HC\Leftrightarrow6^2=HB\left(HB+9\right)\)

\(\Leftrightarrow HB^2+9HB-36=0\Rightarrow\left[{}\begin{matrix}HB=3\\HB=-12\left(loại\right)\end{matrix}\right.\)

\(\Rightarrow HC=HB+9=12\)

Ta có: HC-HB=9

nên HC=9+HB

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH^2=HB\cdot HC\)

\(\Leftrightarrow HB^2+9HB-36=0\)

\(\Leftrightarrow\left(HB+12\right)\left(HB-3\right)=0\)

\(\Leftrightarrow HB=3\left(cm\right)\)

\(\Leftrightarrow HC=12\left(cm\right)\)

27 tháng 7 2017

B1: Gọi Tam giác ABC vuông tại A có AH là đ/cao chia cạnh huyền thành 2 đoạn HB và HC

AH2​=HB x HC =3x4=12

AH=căn 12 r tính mấy cạnh kia đi

B2: Ta có AB/3=AC/4 suy ra AB = 3AC/4

Thế vào cong thức Pytago Tam giác ABC tính máy cái kia

27 tháng 7 2017

Oh 2015 tuong ms dang chu :v

HC=6^2/9=4cm

25 tháng 5 2023

làm rõ các bước cho tớ nhé cảm ơn nha

 

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

6 tháng 3 2022

undefined

1) 

a) Xét ΔABC có 

\(BC^2=AC^2+AB^2\left(7.5^2=4.5^2+6^2\right)\)

nên ΔABC vuông tại A(Định lí Pytago đảo)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A, ta được:

\(AB\cdot AC=AH\cdot BC\)

\(\Leftrightarrow AH=\dfrac{AB\cdot AC}{BC}=\dfrac{4.5\cdot6}{7.5}=\dfrac{27}{7.5}=3.6\left(cm\right)\)

Vậy: AH=3,6cm

b) Áp dụng định lí Pytago vào ΔACH vuông tại H, ta được:

\(AC^2=AH^2+CH^2\)

\(\Leftrightarrow CH^2=4.5^2-3.6^2=7.29\)

hay CH=2,7(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên BH=BC-CH=7,5-2,7=4,8(cm)

Vậy: BH=4,8cm; CH=2,7cm

1 tháng 7 2021

1.a)Ta có:7,52=4,52+62 nên theo định lí Py-ta-go 

=>\(\Delta ABC\) vuông tại A

Ta có: AB.AC=BC.AH

=> \(AH=\dfrac{AC.AB}{BC}=\dfrac{4,5.6}{7,5}=3.6\)  (cm)