tìm x:
\(2^{3x+1}=32\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x-2=-6\)
\(x=-6+2\)
\(x=-4\)
b) \(15-\left(x-7\right)=-21\)
\(x-7=36\)
\(x=43\)
c) \(4.\left(3x-4\right)-2=18\)
\(4\left(3x-4\right)=20\)
\(3x-4=5\)
\(3x=9\)
\(x=3\)
d) \(\left(3x-6\right)+3=32\)
\(3x-6=29\)
\(3x=29+6\)
\(3x=35\)
\(x=\frac{35}{3}\)
e) \(\left(3x-6\right).3=32\)
\(3x-6=\frac{32}{3}\)
\(3x=\frac{32}{3}+6\)
\(3x=\frac{50}{3}\)
\(x=\frac{50}{9}\)
f) \(\left(3x-6\right):3=32\)
\(3x-6=96\)
\(3x=102\)
\(x=34\)
g) \(\left(3x-6\right)-3=32\)
\(3x-6=35\)
\(3x=41\)
\(x=\frac{41}{3}\)
h) \(\left(3x-2^4\right).7^3=2.7^4\)
\(\left(3x-2^4\right)=2.7=14\)
\(\left(3x-16\right)=14\)
\(3x=14+16=30\)
\(x=10\)
i) \(\left|x\right|=\left|-7\right|\)
\(\left|x\right|=7\)
\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)
k) \(\left|x+1\right|=2\)
\(\Rightarrow\orbr{\begin{cases}x+1=2\\x+1=-2\end{cases}\Rightarrow\orbr{\begin{cases}x=1\\x=-3\end{cases}}}\)
l) \(\left|x-2\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-2=3\\x-2=-3\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=-1\end{cases}}}\)
m) \(x+\left|-2\right|=0\)
\(x+2=0\)
\(x=-2\)
o) \(72-3\left|x+1\right|=9\)
\(3\left|x-1\right|=63\)
\(\left|x-1\right|=21\)
\(\Rightarrow\orbr{\begin{cases}x-1=21\\x-1=-21\end{cases}\Rightarrow\orbr{\begin{cases}x=22\\x=-20\end{cases}}}\)
p) Ta có: \(\left|x-1\right|=3\)
\(\Rightarrow\orbr{\begin{cases}x-1=3\\x-1=-3\end{cases}}\)
mà \(x+1< 0\)
\(\Rightarrow x-1=-3\)
\(\Rightarrow x=-2\)
q) \(\left(x-2\right)\left(x+4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-2=0\\x+4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=2\\x=-4\end{cases}}}\)
hok tốt!!
2.(1 + 3 + 3² + ... + 3ˣ) + 1 = 81
2.(3ˣ⁺¹ - 1)/2 + 1 = 81
3ˣ⁺¹ - 1 + 1 = 81
3ˣ⁺¹ = 81
3ˣ⁺¹ = 3⁴
x + 1 = 4
x = 4 - 1
x = 3
b: =>2|3x+1|=18
=>|3x+1|=9
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=9\\3x+1=-9\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{8}{3}\\x=-\dfrac{10}{3}\end{matrix}\right.\)
đk: \(x\ge0\)
Ta có: \(3x^2-18x+32=4\sqrt{x}+1\)
\(\Leftrightarrow3x^2-18x+31=4\sqrt{x}\)
\(\Leftrightarrow\left(3x^2-18x+31\right)^2=\left(4\sqrt{x}\right)^2\)
\(\Leftrightarrow9x^4+324x^2+961-108x^3-1116x+186x^2=16x\)
\(\Leftrightarrow9x^4-108x^3+510x^2-1132x+961=0\)
Bấm nghiệm ta được: \(x\approx2.1978946\) ; \(x\approx4.18013426\)
1) Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3x+2-2x+3=0\\y=3x+2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+5=0\\y=3x+2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=3\cdot\left(-5\right)+2=-15+2=-13\end{matrix}\right.\)
Vậy: Tọa độ giao điểm của 2 đường thẳng y=3x+2 và y=2x-3 là (-5;-13)
2) Đặt (d1): y=3x+2;
(d2): y=2x-3;
(d3): y=(m-2)x+3-m
Tọa độ giao điểm của (d1) và (d2) là nghiệm của hệ phương trình:
\(\left\{{}\begin{matrix}y=3x+2\\y=2x-3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x+2=2x-3\\y=2x-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-5\\y=2\cdot\left(-5\right)-3=-13\end{matrix}\right.\)
Để (d1), (d2) và (d3) đồng quy thì (d3) đi qua tọa độ giao điểm của (d1) và (d2)
Thay x=-5 và y=-13 vào (d3), ta được:
\(\left(m-2\right)\cdot\left(-5\right)+3-m=-13\)
\(\Leftrightarrow-5m+10+3-m+13=0\)
\(\Leftrightarrow-6m+26=0\)
\(\Leftrightarrow-6m=-26\)
hay \(m=\dfrac{13}{3}\)
Vậy: Để 3 đường thẳng y=3x+2; y=2x-3 và y=(m-2)x+3-m đồng quy thì \(m=\dfrac{13}{3}\)
Bài 2:
a: Ta có: \(x\left(2x-1\right)-2x+1=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=1\end{matrix}\right.\)
\(2^{3x+1}=32\)
\(2^{3x+1}=2^5\)
TỪ PHÉP TÍNH TRÊN, SUY RA :
\(3x+1=5\)
\(3x=5-1\)
\(3x=4\)
\(x=4:3\)
\(x=\frac{4}{3}\)
VẬY \(x=\frac{4}{3}\)
\(2^{3x+1}=32\)
\(\Rightarrow2^{3x+1}=2^{5^{ }}\)
\(\Rightarrow3x+1=5\)
\(3x=5-1\)
\(3x=4\)
\(x=4\div3\)
\(x=\frac{4}{3}\)