K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 9 2020

đk: \(x\ge0\)

Ta có: \(3x^2-18x+32=4\sqrt{x}+1\)

\(\Leftrightarrow3x^2-18x+31=4\sqrt{x}\)

\(\Leftrightarrow\left(3x^2-18x+31\right)^2=\left(4\sqrt{x}\right)^2\)

\(\Leftrightarrow9x^4+324x^2+961-108x^3-1116x+186x^2=16x\)

\(\Leftrightarrow9x^4-108x^3+510x^2-1132x+961=0\)

Bấm nghiệm ta được: \(x\approx2.1978946\) ; \(x\approx4.18013426\)

17 tháng 7 2018

\(3x^2+6y^2+2z^2+3y^2z^2-18x=6\)

\(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(\Rightarrow3\left(x-3\right)^2\le33\)

\(\Leftrightarrow\left(x-3\right)^2\le11\)

\(\Leftrightarrow\left(x-3\right)^2=\left\{0;1;4;9\right\}\)

Thế lần lược vô giải tiếp sẽ ra

17 tháng 7 2018

Áp dụng với 6y^2 thì còn ngắn hơn nữa

AH
Akai Haruma
Giáo viên
30 tháng 7 2024

Lời giải:

PT $\Leftrightarrow 3(x^2-6x+9)+6y^2+2z^2+3y^2z^2=33$

$\Leftrightarrow 3(x-3)^2+6y^2+2z^2+3y^2z^2=33$

$\Rightarrow 2z^2\vdots 3$

$\Rightarrow z\vdots 3$

Lại có:

$2z^2=33-3(x-3)^2-6y^2-3y^2z^2\leq 33$

$\Rightarrow z^2<17\Rightarrow -4\leq z\leq 4$ (do $z$ nguyên)

Mà $z\vdots 3$ nên $z\in \left\{\pm 3; 0\right\}$

Nếu $z=0$ thì:

$3(x-3)^2+6y^2=33$

$\Leftrightarrow (x-3)^2+2y^2=11$

$\Rightarrow y^2\leq \frac{11}{2}<9\Rightarrow -3< y< 3$

$\Rightarrow y\in \left\{\pm 2; \pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

Nếu $z=\pm 3$ thì:

$3(x-3)^2+15y^2=15$

$\Rightarrow 15y^2\leq 15$

$\Rightarrow y^2\leq 1\Rightarrow -1\leq y\leq 1$

$\Rightarrow y\in \left\{\pm 1; 0\right\}$

Thay từng giá trị vào tìm $x$.

 

<=>3(x2-6x+9)+6y2+2z2+3y2z2=33

<=>3(x-3)2+6y2+2z2+3y2z2=33

nhận thấy 3(x-3)2;6y2;3y2z2 chia hết cho 

=>2z2 chia hết cho 3=>z chia hết cho 3

giả sử trong 4 số đó không số nào =0

=>\(3\left(x-3\right)^2\ge3;6y^2\ge6;2z^2\ge18;3y^2z^2\ge27\Rightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2\ge54\)(vô lí)

với x-3=0

=>x=3

pt trở thành 6y2+2z2+3y2z2=6

<=>(3y2+2)(z2+2)=10

với y=0

=>3(x-3)2+2z2=33 (đến đây thid dễ rồi)

với z=0=>3(x-3)2+6y2=33

=>(x-3)2+2y2=11

16 tháng 8 2018

http://123link.pro/eP1KS

15 tháng 4 2019

Dễ thấy \(z^2\)chia hết cho 3 \(\Rightarrow z⋮3\Rightarrow z^2⋮9\)

* Xét \(z^2=0\), ta có \(3x^2+6y^2-18x-6=0\)

                   \(\Leftrightarrow3\left(x-3\right)^2+6y^2=33\Leftrightarrow\left(x-3\right)^2+2y^2=11\)

\(2y^2\le11\Rightarrow y^2\le2^2\Rightarrow y^2=0^2;1^2;2^2\)

\(+y^2=0^2\Rightarrow\left(x-3\right)^2=11\)(vô lí)

\(+y^2=1^2\Rightarrow\left(x-3\right)^2=3^2\Rightarrow x-3=\pm3\)

                    \(\Rightarrow x=6\)hoặc \(x=0\)

Có các nghiệm \(\left(x=6;y=1;z=0\right)\)          \(\left(x=6;y=-1;z=0\right)\)

                          \(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

\(+y^2=2^2\Rightarrow\left(x-3\right)^2=3\)( vô lí)

* Xét \(z^2\ge9\) ta có: \(3x^2+6y^2+2z^2+3y^2z^2-18x-6=0\)

                \(\Leftrightarrow3\left(x-3\right)^2+6y^2+2z^2+3y^2z^2=33\)

\(+y^2\ge1\)thì \(2z^2+3y^2z^2\ge2.9+3.1.9>33\)(loại)

\(+y^2=0\)thì \(3\left(x-3\right)^2+2z=33\)

    \(z^2=9\)thì \(3\left(x-3\right)^2=15\)(loại)

\(z^2>9\Rightarrow z^2\ge6^2=36\)

Ta có  \(3\left(x-3\right)^2+2z^2>33\)(loại)

Nghiệm nguyên của ptrình là: 

\(\left(x=6;y=1;z=0\right)\)           \(\left(x=6;y=-1;z=0\right)\)

\(\left(x=0;y=1;z=0\right)\)          \(\left(x=0;y=-1;z=0\right)\)

14 tháng 9 2017

\(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{9x^2+18x+8}+1\right)=2\)

\(\Leftrightarrow\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{\left(3x+4\right)\left(3x+2\right)}+1\right)=2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)\(\left(a,b\ge0\right)\), ta có hpt:

\(\left\{{}\begin{matrix}a^2-b^2=2\left(1\right)\\\left(a-b\right)\left(ab+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow a^2-b^2=\left(a-b\right)\left(ab+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(ab+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-ab-1\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(1-a\right)=0\)

* Trường hợp 1: \(a-b=0\Leftrightarrow a=b\)

\(\Rightarrow\sqrt{3x+4}=\sqrt{3x+2}\)

\(\Leftrightarrow0x=\sqrt{2}-2\)

=> Pt vô no

* Trường hợp 2: \(b-1=0\Leftrightarrow b=1\)

\(\Rightarrow\sqrt{3x+2}=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\left(n\right)\)

* Trường hợp 3: \(a-1=0\Leftrightarrow a=1\)

\(\Rightarrow\sqrt{3x+4}=1\)

\(\Rightarrow x=-1\left(l\right)\)

Vậy x = \(-\dfrac{1}{3}\)

22 tháng 9 2017

\(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3x+4=a^2\\3x+2=b^2\end{matrix}\right.\)

\(\Rightarrow\left(3x+4\right)-\left(3x+2\right)=a^2-b^2\) (trừ theo vế)

\(\Rightarrow a^2-b^2=2\)