nhanh với ạaa
Câu 18: Xác định phân thức A thoả mãn:
4/x-1 - A=8/x\(^{ }\) bình - 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1.2 + 2.3 + 3.4 + ... + n(n + 1)
3S = 1.2.3 + 2.3.3 + 3.4.3 + ... + n(n+1).3
3S = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + n(n + 1)[(n + 2) - (n - 1)]
3S = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + n(n + 1)(n + 2) - (n - 1)n(n + 1)
3S = n(n + 1)(n + 2)
S = n(n + 1)(n + 2) : 3
bạn có chắc đúng đề không vậy vì \(\frac{x^2+1}{1}>0 \text{ Với mọi x}\)
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.
\(\dfrac{A}{x-3}=\dfrac{y-x}{3-x}\)
\(\Rightarrow A=\dfrac{\left(x-3\right)\left(y-x\right)}{3-x}\)
\(\Rightarrow A=\dfrac{-\left(3-x\right)\left(y-x\right)}{3-x}\)
\(\Rightarrow A=x-y\)
_____
\(\dfrac{5x}{x+1}=\dfrac{Ax\left(x+1\right)}{\left(1-x\right)\left(1+x\right)}\)
\(\Rightarrow A=\dfrac{5x\left(x+1\right)\left(1-x\right)}{x\left(x+1\right)}\)
\(\Rightarrow A=5\left(1-x\right)\)
\(\Rightarrow A=5-5x\)
____
\(\dfrac{4x^2-5x+1}{A}=\dfrac{4x-1}{x+3}\)
\(\Rightarrow\dfrac{\left(4x-1\right)\left(x-1\right)}{A}=\dfrac{4x-1}{x+3}\)
\(\Rightarrow A=\dfrac{\left(4x-1\right)\left(x-1\right)\left(x+3\right)}{4x-1}\)
\(\Rightarrow A=\left(x-1\right)\left(x+3\right)\)
\(\Rightarrow A=x^2+2x-3\)
\(a,Đkxđ:x\ne\pm2\)
\(A=\frac{1}{x-2}+\frac{1}{x+2}+\frac{x^2+1}{x^2-4}\)
\(=\frac{x+2+x-2+x^2+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+2x+1}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{\left(x+1\right)^2}{x^2-4}\)
b, Ta có: \(\left(x-2\right)\left(x+2\right)< 0;\forall-2< 2< 2;x\ne-1\)
Mà: \(\left(x+1\right)^2>0\left(\forall x\ne-1\right)\)
\(\Rightarrow\frac{\left(x+1\right)^2}{\left(x+2\right)\left(x-2\right)}< 0;\forall-2< x< 2;x\ne-1\)
Vậy ............
ĐKXĐ: x ≠ 1; x ≠ -1
4/(x - 1) - A = 8/(x² - 1)
⇒ A = 4/(x - 1) - 8/(x² - 1)
= 4(x + 1)/(x² - 1) - 8/(x² - 1)
= (4x + 4 - 8)/(x² - 1)
= (4x - 4)/(x² - 1)
= 4(x - 1)/[(x - 1)(x + 1)]
= 4/(x + 1)