Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
b,
Trước tiên để pt có hai nghiệm phân biệt thì:
Δ′=22−(m+2)>0⇔m<2Δ′=22−(m+2)>0⇔m<2
Áp dụng định lý Viete với $x_1,x_2$ là hai nghiệm của pt ta có:
{x1+x2=4x1x2=m+2{x1+x2=4x1x2=m+2
Khi đó:
x21+x22=3(x1+x2)x12+x22=3(x1+x2)
⇔(x1+x2)2−2x1x2=3(x1+x2)⇔(x1+x2)2−2x1x2=3(x1+x2)
⇔42−2(m+2)=3.4⇔42−2(m+2)=3.4
⇔m+2=2⇒m=0⇔m+2=2⇒m=0 (thỏa mãn)
Vậy m=0
a) Thay m = 2 vào phương trình ta có
<=> x2 - 4x + 4 = 0
<=> x2 - 2.2x + 22 = 0
<=> (x - 2)2 = 0
<=> x - 2 = 0
<=> x = 2
Vậy tập ngiệm của phương trình là S ={2}
Xin lỗi đây là giới hạn của em
a, Thay m = 2 vào phương trình trên ta được :
\(x^2-4x+4=0\Leftrightarrow\left(x-2\right)^2=0\Leftrightarrow x=2\)
Vậy với m = 2 thì x = 2
b, Theo vi et ta có : \(\hept{\begin{cases}x_1+x_2=\frac{-b}{a}=4\\x_1x_2=\frac{c}{a}=m+2\end{cases}}\)
\(x_1^2+x_2^2=3m+6\)
mà \(x_1+x_2=4\Leftrightarrow\left(x_1+x_2\right)^2=16\Leftrightarrow x_1^2+x_2^2=16-2x_1x_2\)
hay \(16-2\left(m+2\right)=3m+6\Leftrightarrow16-2m-4=3m+6\)
\(\Leftrightarrow6=5m\Leftrightarrow m=\frac{6}{5}\)
a= 1; b'= -(m+1); c=2m
1. Δ'>0
Theo Hệ thức Viet ta có: S=...= 2(m+1) và P= 2m
2. Để PT có 2 nghiệm cùng dương
\(\left\{{}\begin{matrix}S=2\left(m+1\right)>0\Leftrightarrow m>-1\\P=2m>0\Leftrightarrow m>0\end{matrix}\right.\Rightarrow m>0\)
Vậy với m>0 thì PT có 2 nghiệm cùng dương
3. Từ Viets:
S= 2(m+1)= 2m+2
P= 2m
Suy ra: S-P=2m+2-2m=2
hay x1+x2-x1.x2-2=0
1,với m=4=>phương trình(1) <=>\(x^2+x+4-5=0\Leftrightarrow x^2+x-1=0\)
\(\Delta=1^2-4.1.\left(-1\right)=5\Rightarrow\hept{\begin{cases}x1=\frac{-1+\sqrt{5}}{2}\\x2=\frac{-1-\sqrt{5}}{2}\end{cases}}\)
2 để phương trình có 2 nghiệm phân biệt =>\(\Delta>0\Leftrightarrow1^2-4.1.\left(m-5\right)>0\)
\(\Leftrightarrow1-4m+20>0\Leftrightarrow m< \frac{21}{4}\)áp dụng hệ thức vi-ét ta có
\(\hept{\begin{cases}x1+x2=\frac{-b}{a}=-1\hept{\begin{cases}-x1=x2+1\\-x2=x1=1\end{cases}}\\x1.x2=\frac{c}{a}=m-5\end{cases}}\)
để \(\frac{6-m-x1}{x2}+\frac{6-m-x2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{m-6+x1}{-x2}+\frac{m-6+x2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{\left(m-5\right)+\left(x1+1\right)-2}{x1+1}+\frac{\left(m-5\right)+\left(x2+1\right)-2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{x1+1}+1-\frac{2}{x1+1}+\frac{x1.x2}{x2+1}+1-\frac{2}{x2+1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{x1.x2}{-x2}+1-\frac{2}{-x2}+\frac{x1.x2}{-x1}+1-\frac{2}{-x1}=\frac{10}{3}\)
\(\Leftrightarrow-x1+1+\frac{2}{x2}-x2+1+\frac{2}{x1}=\frac{10}{3}\)
\(\Leftrightarrow-\left(x1+x2\right)+1+1+\frac{2x_2+2x_1}{x2.x2}=\frac{10}{3}\)
\(\Leftrightarrow3+\frac{2\left(x1+x2\right)}{x2.x1}=\frac{10}{3}\)
\(\Leftrightarrow\frac{2.\left(-1\right)}{m-5}=\frac{1}{3}\)
\(\Leftrightarrow\frac{-2}{m-5}=\frac{1}{3}\)
\(\Rightarrow m-5=-2.3\)
\(\Leftrightarrow m-5=-6\Leftrightarrow m=-1\)(t/m)
vậy m=1
a) Xét pt \(x^2-\left(2m-3\right)x+m^2-3m=0\)
Ta có \(\Delta=\left[-\left(2m-3\right)^2\right]-4.1\left(m^2-3m\right)\)\(=4m^2-12m+9-4m^2+12m\)\(=9>0\)
Vậy pt đã cho luôn có 2 nghiệm phân biệt với mọi m.
Câu b mình nhìn không rõ đề, bạn sửa lại nhé.