K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Ta có: ΔABC vuông tại A

=>\(\widehat{ACB}+\widehat{ABC}=90^0\)

=>\(\widehat{ACB}=90^0-50^0=40^0\)

b: Xét ΔCAD và ΔCED có

CA=CE

\(\widehat{ACD}=\widehat{ECD}\)

CD chung

Do đó: ΔCAD=ΔCED

=>DA=DE
c: Ta có: ΔCAD=ΔCED

=>\(\widehat{CAD}=\widehat{CED}\)

mà \(\widehat{CAD}=90^0\)

nên \(\widehat{CED}=90^0\)

=>DE\(\perp\)CB

Xét ΔDAF vuông tại A và ΔDEB vuông tại E có

DA=DE
\(\widehat{ADF}=\widehat{EDB}\)

Do đó: ΔDAF=ΔDEB

=>DF=DB

=>D nằm trên đường trung trực của BF(1)

Ta có: IF=IB

=>I nằm trên đường trung trực của BF(2)

Ta có: CA+AF=CF
CE+EB=CB

mà CA=CE và AF=EB(ΔDAF=ΔDEB)

nên CF=CB

=>C nằm trên đường trung trực của BF(3)

Từ (1),(2),(3) suy ra C,D,I thẳng hàng

NV
6 tháng 3

a.

Áp dụng tính chất tổng 3 góc trong tam giác:

\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)

\(\Leftrightarrow50^0+\widehat{ACB}+90^0=180^0\)

\(\Leftrightarrow\widehat{ACB}=40^0\)

b.

Xét hai tam giác DCA và DCE có:

\(\left\{{}\begin{matrix}CA=CE\left(gt\right)\\\widehat{DCA}=\widehat{DCE}\left(\text{CD là phân giác}\right)\\CD\text{ là cạnh chung}\end{matrix}\right.\)

\(\Rightarrow\Delta DCA=\Delta DCE\left(c.g.c\right)\)

\(\Rightarrow DE=DA\)

c.

Từ câu b, do \(\Delta DCA=\Delta DCE\Rightarrow\widehat{DEC}=\widehat{DAC}=90^0\)

Xét hai tam giác CAB và CEF có:

\(\left\{{}\begin{matrix}\widehat{CAB}=\widehat{CEF}=90^0\\CA=CE\left(gt\right)\\\widehat{ACE}-chung\end{matrix}\right.\) \(\Rightarrow\Delta CAB=\Delta CEF\left(g.c.g\right)\)

\(\Rightarrow CB=CF\)

\(\Rightarrow\Delta CBF\) cân tại C

Mà I là trung điểm BF \(\Rightarrow CI\) là trung tuyến nên CI đồng thời là phân giác \(\widehat{ACB}\)

\(\Rightarrow\) Đường thẳng CI trùng đường thẳng AD hay C, D, I thẳng hàng

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

1: 

góc BAH+góc KAC=90 độ

góc BAH+góc ABH=90 độ

=>góc KAC=góc ABH

Xét ΔHBA vuông tại H và ΔKAC vuông tại K có

BA=AC

góc ABH=góc CAK

=>ΔHBA=ΔKAC

2 tháng 12 2021

\(1,HC=\dfrac{AH^2}{BH}=\dfrac{256}{9}\\ \Rightarrow AB=\sqrt{BH\cdot BC}=\sqrt{\left(\dfrac{256}{9}+9\right)9}=\sqrt{337}\\ 2,BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\\ \Rightarrow BH=\dfrac{AB^2}{BC}=6,4\left(cm\right)\\ 3,AC=\sqrt{BC^2-AB^2}=9\\ \Rightarrow CH=\dfrac{AC^2}{BC}=5,4\\ 4,AC=\sqrt{BC\cdot CH}=\sqrt{9\left(6+9\right)}=3\sqrt{15}\\ 5,AC=\sqrt{BC^2-AB^2}=4\sqrt{7}\left(cm\right)\\ \Rightarrow AH=\dfrac{AB\cdot AC}{BC}=3\sqrt{7}\left(cm\right)\\ 6,AC=\sqrt{BC\cdot CH}=\sqrt{12\left(12+8\right)}=4\sqrt{15}\left(cm\right)\)

2 tháng 12 2021

Anh ơi

6 tháng 7 2023

1

\(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{.4}AC\)

Theo pytago xét tam giác ABC vuông tại A có:

\(\sqrt{AB^2+AC^2}=BC^2\\ \Rightarrow\sqrt{\left(\dfrac{3}{4}AC\right)^2+AC^2}=10\\ \Rightarrow AC=8\\ \Rightarrow AB=\dfrac{3.8}{4}=6\)

Theo hệ thức lượng xét tam giác ABC vuông tại A, đường cao AH có:

\(AB^2=BH.BC\\ \Leftrightarrow BH=\dfrac{AH^2}{BC}=\dfrac{6^2}{10}=3,6\)

2

\(\dfrac{AB}{AC}=\dfrac{27}{4}\Rightarrow AB=\dfrac{27}{4}AC\)

\(BC=\sqrt{AB^2+AC^2}=\sqrt{\left(\dfrac{27}{4}AC\right)^2+AC^2}=\dfrac{\sqrt{745}AC}{4}\) ( Theo pytago trong tam giác ABC vuông tại A)

Theo hệ thức lượng trong tam giác ABC vuông tại A, đường cao AH có:

\(AH.BC=AB.AC\\ \Leftrightarrow33,6.\dfrac{\sqrt{745}}{4}AC=\dfrac{27}{4}AC.AC\\ \Rightarrow AC=\dfrac{56\sqrt{745}}{45}\)

\(\Rightarrow\left\{{}\begin{matrix}AB=\dfrac{27}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{42\sqrt{745}}{5}\\BC=\dfrac{\sqrt{745}}{4}.\dfrac{56\sqrt{745}}{45}=\dfrac{2086}{9}\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}AC\approx33,97\\AB\approx229,28\\BC\approx231,78\end{matrix}\right.\)

3

`BC=HB+HC=36+64=100`

Theo hệ thức lượng có (trong tam giác ABC vuông tại A đường cao AH):

\(AH^2=HB.HC\\ \Rightarrow AH=\sqrt{36.64}=48\)

\(AB=\sqrt{HB.BC}=\sqrt{36.100}=60\\ AC=\sqrt{HC.BC}=\sqrt{64.100}=80\)

14 tháng 12 2023

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(BC^2=5^2+12^2=169\)

=>\(BC=\sqrt{169}=13\left(cm\right)\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}=\dfrac{5}{13}\)

nên \(\widehat{B}\simeq23^0\)

Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}\simeq90^0-23^0=67^0\)

b: Ta có: ΔABC vuông tại A

=>\(\widehat{B}+\widehat{C}=90^0\)

=>\(\widehat{C}=90^0-40^0=50^0\)

Xét ΔABC vuông tại A có \(sinB=\dfrac{AC}{BC}\)

=>\(BC=\dfrac{AC}{sinB}=\dfrac{5}{sin40}\simeq7,78\left(cm\right)\)

ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AB^2=BC^2-AC^2\)

=>\(AB\simeq\sqrt{7,78^2-5^2}\simeq5,96\left(cm\right)\)

17 tháng 2 2018

giải tam giác ABC  vuông cân tại A là sao

28 tháng 3 2019

BC2=170

11 tháng 10 2021

Bài 1: 

Xét ΔABC vuông tại A có 

\(AB^2+AC^2=BC^2\)

hay \(AB=\sqrt{13}\left(cm\right)\)

Xét ΔABC vuông tại A có 

\(\sin\widehat{B}=\dfrac{AC}{BC}=\dfrac{6}{7}\)

nên \(\widehat{B}=59^0\)

hay \(\widehat{C}=31^0\)

21 tháng 3 2022

C

cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.                 a,chứng minh tam giác ABC=tam giác AED .                                                                                                                                            b,chứng minh tam giác ABC là tam giác cân .                                                                                                                             ...
Đọc tiếp

cho tam giác ABC vuông tại B có góc A=50 độ, lấy điểm D trên tia AB.Sao cho AD=AC, từ D kẻ DE vuông góc AC tại E.                 a,chứng minh tam giác ABC=tam giác AED .                                                                                                                                            b,chứng minh tam giác ABC là tam giác cân .                                                                                                                                     c, gọi M là giao điểm của BC và DE. tính độ dài cạnh MC, biết AB=6cm,AC=10cm,AM=7cm.                                                           d,Gọi I là trung điểm của BE . chứng minh rằng A,I,M thẳng hàng                                                                                                        (vẽ hình và ghi giả thiết kết luận hộ mình với )        MÌNH CẦN GẤP TRONG HÔM NAY

 

1
11 tháng 3 2022

giúp mình với mình cần gấp lắm