Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Anh không vẽ hình vì sợ duyệt. Với lại anh sẽ chia bài này thành 4 câu trả lời cho 4 câu a,b,c,d để rút ngắn lại. Dài quá cũng sợ duyệt.
a) \(\Delta ABC\)vuông tại A (gt) \(\Rightarrow\widehat{B}+\widehat{C}=90^0\)(tình chất tam giác vuông)\(\Rightarrow\widehat{C}=90^0-\widehat{B}\)
Vì \(\widehat{B}=60^0\left(gt\right)\Rightarrow\widehat{C}=90^0-60^0=30^0\)
b) Vì H là trung điểm của AK (gt) \(\Rightarrow HA=HK\)và H nằm giữa A và K
Xét \(\Delta ABH\)và \(\Delta KBH\), ta có:
\(AB=BK\left(gt\right);HA=HK\left(cmt\right);\)BH là cạnh chung
\(\Rightarrow\Delta ABH=\Delta KBH\left(c.c.c\right)\)
\(\Rightarrow\widehat{AHB}=\widehat{KHB}\)(2 góc tương ứng)
Mặt khác vì H nằm giữa A và K (cmt) \(\Rightarrow\widehat{AHB}+\widehat{KHB}=180^0\)\(\Rightarrow2\widehat{AHB}=180^0\)\(\Rightarrow\widehat{AHB}=90^0\)
\(\Rightarrow AK\perp BI\)tại H
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
a: Ta có: ΔABC vuông tại A
=>\(\widehat{ACB}+\widehat{ABC}=90^0\)
=>\(\widehat{ACB}=90^0-50^0=40^0\)
b: Xét ΔCAD và ΔCED có
CA=CE
\(\widehat{ACD}=\widehat{ECD}\)
CD chung
Do đó: ΔCAD=ΔCED
=>DA=DE
c: Ta có: ΔCAD=ΔCED
=>\(\widehat{CAD}=\widehat{CED}\)
mà \(\widehat{CAD}=90^0\)
nên \(\widehat{CED}=90^0\)
=>DE\(\perp\)CB
Xét ΔDAF vuông tại A và ΔDEB vuông tại E có
DA=DE
\(\widehat{ADF}=\widehat{EDB}\)
Do đó: ΔDAF=ΔDEB
=>DF=DB
=>D nằm trên đường trung trực của BF(1)
Ta có: IF=IB
=>I nằm trên đường trung trực của BF(2)
Ta có: CA+AF=CF
CE+EB=CB
mà CA=CE và AF=EB(ΔDAF=ΔDEB)
nên CF=CB
=>C nằm trên đường trung trực của BF(3)
Từ (1),(2),(3) suy ra C,D,I thẳng hàng
a.
Áp dụng tính chất tổng 3 góc trong tam giác:
\(\widehat{ABC}+\widehat{ACB}+\widehat{BAC}=180^0\)
\(\Leftrightarrow50^0+\widehat{ACB}+90^0=180^0\)
\(\Leftrightarrow\widehat{ACB}=40^0\)
b.
Xét hai tam giác DCA và DCE có:
\(\left\{{}\begin{matrix}CA=CE\left(gt\right)\\\widehat{DCA}=\widehat{DCE}\left(\text{CD là phân giác}\right)\\CD\text{ là cạnh chung}\end{matrix}\right.\)
\(\Rightarrow\Delta DCA=\Delta DCE\left(c.g.c\right)\)
\(\Rightarrow DE=DA\)
c.
Từ câu b, do \(\Delta DCA=\Delta DCE\Rightarrow\widehat{DEC}=\widehat{DAC}=90^0\)
Xét hai tam giác CAB và CEF có:
\(\left\{{}\begin{matrix}\widehat{CAB}=\widehat{CEF}=90^0\\CA=CE\left(gt\right)\\\widehat{ACE}-chung\end{matrix}\right.\) \(\Rightarrow\Delta CAB=\Delta CEF\left(g.c.g\right)\)
\(\Rightarrow CB=CF\)
\(\Rightarrow\Delta CBF\) cân tại C
Mà I là trung điểm BF \(\Rightarrow CI\) là trung tuyến nên CI đồng thời là phân giác \(\widehat{ACB}\)
\(\Rightarrow\) Đường thẳng CI trùng đường thẳng AD hay C, D, I thẳng hàng