K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 3

\(\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) nguyên thì \(n-3\inƯ\left(2\right)=\left\{\pm1;\pm2\right\}\)
Ta có bảng sau:

\(n-3\)\(-2\)\(-1\)\(1\)\(2\)
\(n\)\(1\)\(2\)\(4\)\(5\)

Vậy để \(\dfrac{n-5}{n-3}\) nguyên thì \(n\in\left\{1;2;4;5\right\}\)

Ta có: \(\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\)
Để \(\dfrac{n-5}{n-3}\) nguyên
thì \(1-\dfrac{2}{n-3}\) nguyên
\(\Rightarrow2⋮n-3\)
\(\Rightarrow n-3\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)
Lập bảng

n-3 1 -1 2 -2
n 4 2 5 1


Vậy nếu \(n\in\left\{4;2;5;1\right\}\) thì \(\dfrac{n-5}{n-3}\) có giá trị nguyên

 

2 tháng 5 2023

a) Ta có \(A=\dfrac{n-5}{n-3}=\dfrac{n-3-2}{n-3}=1-\dfrac{2}{n-3}\). Để \(A\inℤ\) thì \(\dfrac{2}{n-3}\inℤ\) hay \(n-3\) là ước của 2. Suy ra \(n-3\in\left\{\pm1;\pm2\right\}\)

Nếu \(n-3=1\Rightarrow n=4\)\(n-3=-1\Rightarrow n=2\)\(n-3=2\Rightarrow n=5\)\(n-3=-2\Rightarrow n=1\). Vậy để \(A\inℤ\) thì \(n\in\left\{1;2;4;5\right\}\)

 \(A=\dfrac{n+4}{n+1}\) làm tương tự.

b) Dễ thấy các số ở mẫu có thể viết dưới dạng:

\(10=1+2+3+4=\dfrac{4\left(4+1\right)}{2}=\dfrac{4.5}{2}\)

\(15=1+2+3+4+5=\dfrac{5\left(5+1\right)}{2}=\dfrac{5.6}{2}\)

\(21=1+2+...+6=\dfrac{6\left(6+1\right)}{2}=\dfrac{6.7}{2}\)

...

\(120=1+2+...+15=\dfrac{15\left(15+1\right)}{2}=\dfrac{15.16}{2}\)

Do đó \(A=\dfrac{2}{4.5}+\dfrac{2}{5.6}+\dfrac{2}{6.7}+...+\dfrac{2}{15.16}\) 

\(A=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)

\(A=2\left(\dfrac{5-4}{4.5}+\dfrac{6-5}{5.6}+\dfrac{7-6}{6.7}+...+\dfrac{16-15}{15.16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)

\(A=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)

\(A=\dfrac{3}{8}\)

 

1)C=5/1.2+5/2.3+5/3.4+...+5/99.100

   C=5.(1/1.2+1/2.3+1/3.4+...+1/99.100)

   C=5.(1/1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100)

   C=5.(1/1-1/100)

   C=5.99/100

   C=99/20

2)|x+1|=5

⇒x+1=5 hoặc x+1=-5

       x=4 hoặc x=-6

  3)                    Giải:

Để A=2n+5/n+3 là số nguyên thì 2n+5 ⋮ n+3

2n+5 ⋮ n+3

⇒2n+6-1 ⋮ n+3

⇒1 ⋮ n+3

Ta có bảng:

n+3=-1 ➜n=-4

n+3=1 ➜n=-2

Vậy n ∈ {-4;-2}

10 tháng 5 2022

\(A=\dfrac{-\left(6-2n\right)+5}{3-n}=\dfrac{-2\left(3-n\right)+5}{3-n}=-2+\dfrac{5}{3-n}\)

Để A nguyên => 3-n = Ước của 5

\(\Rightarrow3-n=\left\{-5;-1;1;5\right\}\Rightarrow n=\left\{8;4;2;-2\right\}\)

14 tháng 8 2021

Để B đạt GTLN thì \(\dfrac{8}{2n-1}\)đạt GTLN

⇒2n-1 là số nguyên dương nhỏ nhất

⇒2n-1=1

⇒2n=2

⇒n=1

21 tháng 3 2022

giúp mk vs cảm ơn nhiều ạ 

21 tháng 3 2022

Để n−5/n−3 có giá trị nguyên thì:

  n−5⋮n−3

⇔(n−3)−2⋮n−3

Vì n−3⋮n−3

⇒−2⋮n−3

⇔n−3 ∈Ư(2)= {±1;±2}

⇔n∈ {4;2;5;1}

Vậy để n−5/n−3 có giá trị nguyên thì: x∈ {1;2;4;5}

n-5/n-3 nguyên
\(\Leftrightarrow\) n-5 = n-3-2 chia hết cho -3
​ \(\Leftrightarrow\)​​2 chia hết cho n-3
\(\Leftrightarrow\)n -- 3 thuộc Ư (2) = {-1;1;-2;2}
\(\Leftrightarrow\) n \(\in\) {2;4;1;5}

25 tháng 3 2022

\(\dfrac{n-5}{n-3}\)nguyên
 n-5 = n-3-2 ⋮-3
​​ 2 ⋮ n-3
n -- 3 ∈Ư (2) = {-1;1;-2;2}
 n  {2;4;1;5}

vậy n∈ {2;4;1;5}

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=\dfrac{\left(2n-6\right)+11}{n-3}=\dfrac{2\left(n-3\right)+11}{n-3}=2+\dfrac{11}{n-3}\)

Để biểu thức trên là số nguyên thì \(\dfrac{11}{n-3}\) nguyên\(\Rightarrow11⋮\left(n-3\right)\)\(\Rightarrow n-3\inƯ\left(11\right)\)

Ta có bảng:

n-3-11-1111
n-82414

Vậy \(n\in\left\{-8;2;4;14\right\}\)

16 tháng 3 2022

\(\dfrac{2n+5}{n-3}=2+\dfrac{11}{n-3}\left(n\ne3\right).\)

Để \(\dfrac{2n+5}{n-3}\in Z.\Leftrightarrow n-3\inƯ\left(11\right)\) \(=\left\{1;-1;11;-11\right\}.\)

\(\Rightarrow n\in\left\{4;2;14;-8\right\}.\)

 

4 tháng 5 2022

Ta có A= (3n +10)/(n+3)
= [ 3(n+3) +1 ] /(n+3)
= 3 + 1/(n+3)
Để A nguyên thì 1/(n+3) cũng phải nguyên
tức 1 phải chia hết cho n+3
=> n + 3 = 1 hoặc n + 3 = -1;
Trường hợp: n+3 = 1 => n = -2 khi đó A = 3 + 1 = 4
Trường hợp: n+3 = -1 => n = -4 khi đó A = 3 -1 = 2

 

7 tháng 5 2022

bài 1

để A∈Z

\(=>n+3\inƯ\left(1\right)=\left\{-1;1\right\}\)

\(=>\left\{{}\begin{matrix}n+3=-1\\n+3=1\end{matrix}\right.=>\left\{{}\begin{matrix}n=-4\\n=-2\end{matrix}\right.\)

vậy \(n\in\left\{-4;-2\right\}\)  thì \(A\in Z\)

7 tháng 5 2022

Để A nguyên

⇒ \(\left(n+3\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

n+3        1           -2

n           -2           -4