K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
2 tháng 3

Đề thiếu. Bạn xem lại đề.

15 tháng 1 2019

Ta có: ΔABC cân tại A

⇒ AE là đường cao đồng thời là đường phân giác ∠BAC.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+) Tam giác ABC cân tại A nên AB = AC.

Lại có: AD = AB( giả thiết)

Suy ra: AD = AC

Do đó: ΔADC cân tại A

+) Trong tam giác ADC có: AF là đường caon nên đồng thời là đường phân giác ∠CAD.

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

29 tháng 5 2017

A B C E F D

a) \(\Delta ABC\) cân tại A, AE là đường cao nên đồng thời AE là đường phân giác.

\(\Delta ACD\) cân tại A, AF là đường cao nên đồng thời là AF là đường phân giác.

AE và AF là các tia phân giác của hai góc kề bù \(\widehat{BAC},\widehat{CAD}\) nên AE \(\perp\) AF hay \(\widehat{EAF}=90^o\).

25 tháng 8 2017

Hỏi đáp Toán

Xét tam giác ABC cân tại A có AE là đường cao ta có:

AE đồng thời là đường phân giác của tam giác.

\(\Rightarrow\widehat{BAE}=\widehat{CAE}\)

Xét tam giác ACD cân tại A có AF là đường cao ta có:

AF đồng thời là đường phân giác của tam giác.

\(\Rightarrow\widehat{CAF}=\widehat{DAF}\)

Ta có:

\(\widehat{BAC}+\widehat{DAC}=180^o\)

\(\Rightarrow\widehat{BAE}+\widehat{CAE}+\widehat{CAF}+\widehat{DAF}=180^o\)

\(\Rightarrow2\left(\widehat{CAE}+\widehat{CAF}\right)=180^o\Rightarrow\widehat{EAF}=90^o\)

Vậy...................(đpcm)

Chúc bạn học tốt!!!

22 tháng 9 2019

Bài tập: Đối xứng trục | Lý thuyết và Bài tập Toán 8 có đáp án

Vì Δ ABC cân tại A có AH là đường cao theo giả thiết nên AH cũng là trung trực của BC.

⇒ B đối xứng với C qua AH, E đối xứng với D qua AH.

Mặt khác, ta có A đối xứng với A qua AH theo quy ước.

⇒ Δ ADC đối xứng với Δ AEB qua AH.