GPT:
\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(Pt\Leftrightarrow2002x^4+x^4\sqrt{x^2+2002}+x^2-2002.2001=0\)
\(\Leftrightarrow x^4\left(\sqrt{x^2+2002}+2002\right)+x^2-2002.2001=0\)
\(\Leftrightarrow\dfrac{x^4}{\sqrt{x^2+2002}-2002}\left(x^2+2002-2002^2\right)+\left(x^2-2001.2002\right)=0\)
\(\Leftrightarrow\left(x^2-2001.2002\right)\left(\dfrac{x^4}{\sqrt{x^2+2002}-2002}+1\right)=0\)
Done !
\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-2001}+\sqrt{x-2002}-\sqrt{x-2003}\right)=0\)
=>x-1=0
=>x=1
sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?
sao vậy bạn
k mk nha
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
<=> \(\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)
<=> \(\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
<=> (x - 2004)(1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4) = 0
<=> x - 2004 = 0 (vì 1/2000 + 1/2001 + 1/2002 - 1/2 - 1/3 - 1/4 khác 0)
<=> x = 2004
Vậy S = {2004}
đề bài \(=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{4}{2000}+\frac{x}{2001}-\frac{3}{2001}+\frac{x}{2002}-\frac{2}{2002}=\frac{x}{2}-\frac{2002}{2}+\frac{x}{3}-\frac{2001\\}{3}+\frac{x}{4}-\frac{2000}{4}\)
\(\Leftrightarrow\frac{x}{2000}-\frac{1}{500}+\frac{x}{2001}-\frac{1}{667}+\frac{x}{2002}-\frac{1}{1001}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}+1001+667+500=0\)
\(\Leftrightarrow\left(\frac{x}{2000}+\frac{x}{2001}+\frac{x}{2002}-\frac{x}{2}-\frac{x}{3}-\frac{x}{4}\right)+\left(1001+667+500-\frac{1}{500}-\frac{1}{667}-\frac{1}{1001}\right)=0\)
=> x=1
\(\frac{x-4}{2000}+\frac{x-3}{2001}+\frac{x-2}{2002}=\frac{x-2002}{2}+\frac{x-2001}{3}+\frac{x-2000}{4}\)
\(\Rightarrow\left(\frac{x-4}{2000}-1\right)+\left(\frac{x-3}{2001}-1\right)+\left(\frac{x-2}{2002}-1\right)=\left(\frac{x-2002}{2}-1\right)+\left(\frac{x-2001}{3}-1\right)+\left(\frac{x-2000}{4}-1\right)\)\(\Rightarrow\frac{x-2004}{2000}+\frac{x-2004}{2001}+\frac{x-2004}{2002}=\frac{x-2004}{2}+\frac{x-2004}{3}+\frac{x-2004}{4}\)
\(\Rightarrow\left(x-2004\right)\left(\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}\right)=\left(x-2004\right)\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\right)\)
Với \(x-2004\ne0\)
\(\Rightarrow\frac{1}{2000}+\frac{1}{2001}+\frac{1}{2002}=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}\left(KTM\right)\)
Với \(x-2004=0\)
\(\Rightarrow x=2004\)
\(=\left(x^4+x^3+2002x^2\right)-\left(x^3-x^2+2002x\right)+x^2+x+2002\)
\(=x^2\left(x^2+x+2002\right)-x\left(x^2+x+2002\right)+x^2+x+2002\)
\(=\left(x^2-x+1\right)\left(x^2+x+2002\right)\)
\(\frac{x+4}{2000}+\frac{x+3}{2001}=\frac{x+2}{2002}+\frac{x+1}{2002}\)
<=>\(\frac{x+4}{2000}+1+\frac{x+3}{2001}+1=\frac{x+2}{2002}+1+\frac{x+1}{2002}+1\)
<=>\(\frac{x+2004}{2000}+\frac{x+2004}{2001}=\frac{x+2004}{2002}+\frac{x+2004}{2003}\)
<=>\(\frac{x+2004}{2000}+\frac{x+2004}{2001}-\frac{x+2004}{2002}-\frac{x+2004}{2003}=0\)
<=>\(\left(x+2004\right)\left(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\right)=0\)
Do \(\frac{1}{2000}+\frac{1}{2001}-\frac{1}{2002}-\frac{1}{2003}\ne0\)
=>x+2004=0
<=>x=-2004
Vậy x=-2004
\(\frac{2002x^4+x^4\sqrt{x^2+2002}+x^2}{2001}=2002\)
\(\frac{x^2\left(x^2+2002\right)+x^4\sqrt{x^2+2002}}{2001}=2002\)
\(x^2\sqrt{x^2+2002}\left(\sqrt{x^2+2002}+x^2\right)=2002.2001\)
đặt x^2+2002=a
a-2002=x^2
pt \(\left(a-2002\right)\sqrt{a}\left(\sqrt{a}+a-2002\right)=2002.2001\)