Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\sqrt[3]{3x^2-x+2001}=a;-\sqrt[3]{3x^2-7x+2002}=b;-\sqrt[3]{6x-2003}=c\)
Thì ta có được hệ: \(\hept{\begin{cases}a+b+c=\sqrt[3]{2002}\\a^3+b^3+c^3=2002\end{cases}}\)
\(\Leftrightarrow\left(a+b+c\right)^3=a^3+b^3+c^3\)
\(\Leftrightarrow a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=a^3+b^3+c^3\)
\(\Leftrightarrow\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)
Với a = - b thì
\(\sqrt[3]{3x^2-x+2001}=\sqrt[3]{3x^2-7x+2002}\)
\(\Leftrightarrow3x^2-x+2001=3x^2-7x+2002\)
\(\Leftrightarrow6x=1\)
\(\Leftrightarrow x=\frac{1}{6}\)
Tương tự cho 2 trường hợp còn lại
Đặt \(\left\{{}\begin{matrix}\sqrt[3]{3x^2-x+2001}=a\\\sqrt[3]{3x^2-7x+2002}=b\\\sqrt[3]{6x-2003}=c\end{matrix}\right.\)
\(\Rightarrow a^3-b^3-c^3=2002\) từ đây ta có:
\(a-b-c=\sqrt[3]{a^3-b^3-c^3}\)
\(\Leftrightarrow\left(a-b-c\right)^3=\sqrt[3]{a^3-b^3-c^3}\)
\(\Leftrightarrow\left(a-c\right)\left(a-b\right)\left(b+c\right)=0\)
Tự làm nốt nhé
Dùng hđt \(\sqrt[3]{a}-\sqrt[3]{b}=\dfrac{a-b}{\sqrt[3]{a^2}+\sqrt[3]{ab}+\sqrt[3]{b^2}}\) và \(\sqrt[3]{a}+\sqrt[3]{b}=\dfrac{a+b}{\sqrt[3]{a^2}-\sqrt[3]{ab}+\sqrt[3]{b^2}}\)
Ta có:
\(\sqrt[3]{3x^2-x+2001}-\sqrt[3]{3x^2-7x+2002}=\sqrt[3]{6x+2003}+\sqrt[3]{2002}=0\)
\(\Leftrightarrow\dfrac{6x-1}{\sqrt[3]{\left(3x^2-x+2001\right)^2}+\sqrt[3]{\left(3x^2-x+2001\right)\left(3x^2-7x+2002\right)}+\sqrt[3]{\left(3x^2-7x+2002\right)^2}}=\dfrac{6x-1}{\sqrt[3]{\left(6x+2003\right)^2}-\sqrt[3]{2002.\left(6x+2003\right)}+\sqrt[3]{2002^2}}\)
\(\Leftrightarrow x=\dfrac{1}{6}\)
a) \(\sqrt{3x-4}\) + \(\sqrt{4x+1}\) = \(-16x^2 - 8x +1\) với
ĐKXĐ :
- Vế trái \(x \ge \frac{4}{3}\)
- Vế phải : \(-16x^2 - 8x +1\) \(\ge 0\) \(\Leftrightarrow \) \(x \le \frac{\sqrt{2}-1}{4}\) hoặc \(x \le \frac{-\sqrt{2}-1}{4}\)
Hai điều kiện trái ngược nhau
Vậy phương trình vô nghiệm .
hình như...
b) \(x+y+z+8=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow x-3+y-3+z-3+17=2\sqrt{x-3}+4\sqrt{y-3}+6\sqrt{z-3}\)
\(\Leftrightarrow\left(x-3-2\sqrt{x-3}+1\right)+\left(y-3-4\sqrt{y-3}+4\right)+\left(z-3-6\sqrt{z-3}+9\right)+3=0\)
\(\Leftrightarrow\left(\sqrt{x-3}-1\right)^2+\left(\sqrt{y-3}-2\right)^2+\left(\sqrt{z-3}-3\right)^2+3=0\) (vô nghiệm, VT >/3)
Kl: ptvn
mình giải bằng casio ra x = 0,767591877
sao bạn lại có chữ hiệp sĩ ở bên cạnh tên vậy?
sao vậy bạn
k mk nha