tìm số dư của A=27^2024 chia 25
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(A=a^{2024}-a^{2020}=a^{2020}\left(a^4-1\right)\)
- Chứng minh A chia hết cho 2:
+) Nếu a lẻ thì \(a-1\)chẵn nên A chia hết cho 2
+) Nếu a chẵn thì \(a^{2020}\)chẵn nên A chia hết cho 2
- Chứng minh A chia hết cho 3:
+) Nếu a chia hết cho 3 thì \(a^{2020}\)chia hết cho 3 nên A chia hết cho 3
+) Nếu a không chia hết cho 3 thì \(a^2\equiv1\)(mod 3) \(\Rightarrow a^4\equiv1\)(mod 3). Vậy \(a^4-1\)chia hết cho 3 nên A chia hết cho 3
- Chứng minh A chia hết cho 5:
+) Nếu a chia hết cho 5 thì \(a^{2020}\)chia hết cho 5 nên a chia hết cho 5
+) Nếu a không chia hết cho 5 thì \(a^2\equiv1,4\)(mod 5) \(\Rightarrow a^4\equiv1\)(mod 5). Vậy \(a^4-1\)chia hết cho 5 nên A chia hết cho 5
Từ đây ta có A chia hết cho 2, 3, 5 vậy A chia hết cho 30 \(\Rightarrow a^{2024}\equiv a^{2020}\)(mod 30)
\(\Rightarrow a^{2020}+b^{2020}+c^{2020}\equiv a^{2024}+b^{2024}+c^{2024}\equiv7\)(mod 30)
Vậy \(a^{2024}+b^{2024}+c^{2024}\)chia 30 dư 7
a)Gọi số lớn nhất có 3 chữ số chia hết cho12,18 và 27 là a (a thuộc N*). Theo đề bài ta có:
a chia hết cho 12
a chia hết cho 18
a chia hết cho 27
=> a thuộc BC(12;18;27)
Ta có:
12=22.3
18=2.32
27=33
=>BCNN(12,18,27)=22.33=108
=>BC(12,18,27)={0;108;216;324;432;540;648;756;864;972;...}
Mà a là số lớn nhất có 3 chữ số => a=972
* Ta c/m: \(x^5-x⋮30\forall x\in Z\)
+ \(x^5-x=x\left(x^2-1\right)\left(x^2+1\right)=\left(x-1\right)x\left(x+1\right)\left(x^2-4+5\right)\)
\(=\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)+5\left(x-1\right)x\left(x+1\right)\)
Vì \(\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)\) là tích 5 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮5\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮2\\\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮3\end{matrix}\right.\)
\(\Rightarrow\left(x-2\right)\left(x-1\right)x\left(x+1\right)\left(x+2\right)⋮30\) ( do 2,3,5 đôi một nguyên tố cùng nhau ) (1)
+ \(\left(x-1\right)x\left(x+1\right)\) là tích 3 số nguyên liên tiếp
\(\Rightarrow\left\{{}\begin{matrix}\left(x-1\right)x\left(x+1\right)⋮2\\\left(x-1\right)x\left(x+1\right)⋮3\end{matrix}\right.\) \(\Rightarrow\left(x-1\right)x\left(x+1\right)⋮6\) ( do \(\left(2,3\right)=1\) )
\(\Rightarrow5\left(x-1\right)x\left(x+1\right)⋮30\) (2)
Từ (1) và (2) => đpcm
Trở lại bài toán ta có:
\(P-M=a^{2019}\left(a^5-a\right)+b^{2019}\left(b^5-b\right)+c^{2019}\left(c^5-c\right)⋮30\)
( do \(a^5-a⋮30,b^5-b⋮30,c^5-c⋮30\) )
=> P và M có cùng số dư khi chia 30
=> P chia 30 dư 7
a: Gọi số cần tìm là a
Theo đề, ta có: \(a\in BC\left(18;12;27\right)\)
mà a là số lớn nhất có 3 chữ số
nên a=972
b: Gọi số cần tìm là b
Theo đề, ta có: \(a-1\in BC\left(18;12;27\right)\)
mà a là số nhỏ nhất có 4 chữ số
nên a-1=1080
hay a=1081
Là 1 bạn nhé! Nếu cần câu trả lời cụ thể thì tinh tinh cho mình.