K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2017

2. ta có:
220 ≡76220≡ dư 76(chia cho 100)

=>(220)5≡765≡76(220)5≡765≡ dư76 ( chia cho 100)

=> 2100≡762100≡ dư76(chia cho 100)

=>2100  có hai chữ tận cùng là 76

1 tháng 9 2017

các bạn giúp với ai nhanh mk sẽ k cho mà

11 tháng 2 2017

Mình cũng chưa hiểu lắm! Để mình nghĩ đã! Mình là học sinh chuyên Toán nên sẽ nghĩ ra sơm thôi! Đợi chút nhé

11 tháng 2 2017

1)

Xét 2004 số đề kết thúc là 4 chữ số 2002 :

20022002; 200220022002 ; ...;  20022002...2002

                                               | 2005 cụm 2002 |

Có 2004 số; mà khi chia cho 2003 chỉ có thể có 2003 số dư nên theo nguyên lý Đi-ríc-lê; có ít nhất hai số có cùng số dư khi chia cho 2003; thì hiệu chúng sẽ là bội của 2003.

Gọi 2 số đó là 20022002...2002; 200220022002...2002

                     | n cụm 2002 |           |m cụm 2002|      \(\left(2\le n< m\le2005\right)\)và m,n là các số tự nhiên.

Suy ra : 

                     200220022002...2002 - 20022002...2002 chia hết cho 2003

                        | m cụm 2002 |            | n cụm 2002 |

= 20022002...200220020000000...0000  chia hết cho 2003

   | m - n cụm 2002 |     | 4n chữ số 0 |

\(\Rightarrow200220022002...2002.10^{4n}\)  chia hết cho 2003

        | m - n cụm 2002 | 

Mà (10;2003) = 1 nên (104n;2003)=1

Suy ra 200220022002...2002 chia hết cho 2003

             | m - n cụm 2002 | 

Số này kết thúc là ...2002

23 tháng 10 2017

cái này minh chỉ giải dc câu 1 thôi nhé. 
bấm máy tính CASIO FX-570 ES/VN PLUS.
quy trình ấn phím:
SHIFT -> LOG(dưới nút ON) -> 2 -> X^*(bên cạnh dấu căn) -> ALPHA -> X -> bấm phím xuống -> 1 ->  bấm phím lên -> 20.
bấm dấu bằng.
ta có kết quả là 2097150.
vậy số tận cùng là 0.

5 tháng 9 2023

1) \(S=2.2.2..2\left(2023.số.2\right)\)

\(\Rightarrow S=2^{2023}=\left(2^{20}\right)^{101}.2^3=\overline{....6}.8=\overline{.....8}\)

2) \(S=3.13.23...2023\)

Từ \(3;13;23;...2023\) có \(\left[\left(2023-3\right):10+1\right]=203\left(số.hạng\right)\)

\(\) \(\Rightarrow S\) có số tận cùng là \(1.3^3=27\left(3^{203}=\left(3^{20}\right)^{10}.3^3\right)\)

\(\Rightarrow S=\overline{.....7}\)

3) \(S=4.4.4...4\left(2023.số.4\right)\)

\(\Rightarrow S=4^{2023}=\overline{.....4}\)

4) \(S=7.17.27.....2017\)

Từ \(7;17;27;...2017\) có \(\left[\left(2017-7\right):10+1\right]=202\left(số.hạng\right)\)

\(\Rightarrow S\) có tận cùng là \(1.7^2=49\left(7^{202}=7^{4.50}.7^2\right)\)

\(\Rightarrow S=\overline{.....9}\)

6 tháng 9 2023

Bài 1:

S = 2 x 2 x 2 x 2 x 2 x...x 2 (2023 chữ số 2)

Nhóm 4 thừa số 2 vào một nhóm thì vì:

2023 : 4 = 505 dư 3 

Vậy

S = (2x2x2x2) x...x (2 x 2 x 2 x 2) x 2 x 2 x 2 có 503 nhóm (2x2x2x2)

S = \(\overline{..6}\) x ...x \(\overline{..6}\) x 8

S = \(\overline{..6}\) x 8

S = \(\overline{..8}\)

                

       

6 tháng 9 2023

             Bài 2:

S = 3 x 13 x 23 x...x 2023

Xét dãy số: 3; 13; 23;..;2023

Dãy số trên là dãy số cách đều với khoảng cách là: 13 - 3 = 10

Số số hạng của dãy số trên là: (2023 - 3):10 + 1 = 203 (số hạng)

 Vậy chữ số tận cùng của S bằng chữ số tận cùng của A.

  Với A = 3 x 3 x 3 x...x 3 (203 thừa số 3)

  Nhóm 4 thừa số 3 thành 1 nhóm, vì 203 : 4 = 50 (dư 3)

  A = (3 x 3 x 3 x 3)x...x(3x3x3x3)x3x3x3 có 50 nhóm (3x3x3x3)

   A = \(\overline{..1}\) x...x \(\overline{..1}\) x 27

   A = \(\overline{..7}\)

   

 

 

 

14 tháng 10 2023

S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2⁵⁷ + 2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2⁵⁶.(2 + 2² + 2³ + 2⁴)

= 30 + 2⁴.30 + 2⁵⁶.30

= 30.(1 + 2⁴ + ... + 2⁵⁶)

= 10.3.(1 + 2⁴ + ... + 2⁵⁶) ⋮ 10

Vậy chữ số tận cùng của S là 0

*) S = 2¹ + 2² + 2³ + ... + 2⁶⁰

= (2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶) + ... + (2⁵⁸ + 2⁵⁹ + 2⁶⁰)

= 14 + 2³.(2 + 2² + 2³) + ... + 2⁵⁷.(2 + 2² + 2³)

= 14 + 2³.14 + ... + 2⁵⁷.14

= 14.(1 + 2³ + ... + 2⁵⁷) ⋮ 14

Vậy S ⋮ 14

AH
Akai Haruma
Giáo viên
25 tháng 2 2023

Lời giải:
$S=(2+2^2)+(2^3+2^4)+....+(2^{23}+2^{24})$

$=2(1+2)+2^3(1+2)+....+2^{23}(1+2)$

$=(1+2)(2+2^3+...+2^{23})$

$=3(2+2^3+...+2^{23})\vdots 3$

b.

$S=2+2^2+2^3+...+2^{23}+2^{24}$

$2S=2^2+2^3+2^4+....+2^{24}+2^{25}$

$\Rightarrow 2S-S=2^{25}-2$

$\Rightarrow S=2^{25}-2$

Ta có:

$2^{10}=1024=10k+4$

$\Rightarrow 2^{25}-2=2^5.2^{20}-2=32(10k+4)^2-2=32(100k^2+80k+16)-2$
$=10(320k^2+8k+51)\vdots 10$

$\Rightarrow S$ tận cùng là $0$