xy+x+y/2=1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\begin{array}{l}T + H = 3{x^2}y - 2x{y^2} + xy + \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy - 2{x^2}y + 3x{y^2} + 1\\ = \left( {3{x^2}y - 2{x^2}y} \right) + \left( { - 2x{y^2} + 3x{y^2}} \right) + xy + 1\\ = {x^2}y + x{y^2} + xy + 1\\T - H = 3{x^2}y - 2x{y^2} + xy - \left( { - 2{x^2}y + 3x{y^2} + 1} \right)\\ = 3{x^2}y - 2x{y^2} + xy + 2{x^2}y - 3x{y^2} - 1\\ = \left( {3{x^2}y + 2{x^2}y} \right) + \left( { - 2x{y^2} - 3x{y^2}} \right) + xy - 1\\ = 5{x^2}y - 5x{y^2} + xy - 1\end{array}\)
Chọn B.
x²y + xy² - x - y
= (x²y + xy²) - (x + y)
= xy(x + y) - (x + y)
= (x + y)(xy - 1)
\(B=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2+\left(xy+\frac{1}{xy}\right)^2\)
\(-\left(x+\frac{1}{x}\right)\left(y+\frac{1}{y}\right)\left(xy+\frac{1}{xy}\right)\)
\(\Rightarrow B=x^2+2+\frac{1}{x^2}+y^2+2+\frac{1}{y^2}+x^2y^2+2+\frac{1}{x^2y^2}-x^2y^2\)
\(-2-x^2-y^2-\frac{1}{y^2}-\frac{1}{x^2}-\frac{1}{x^2y^2}\)
\(\Rightarrow B=x^2y^2-x^2y^2+x^2-x^2+1.\frac{1}{x^2}+1.\frac{1}{x^2y^2}-1.\frac{1}{x^2}-1\)
\(.\frac{1}{x^2y^2}+1.\frac{1}{y^2}-1.\frac{1}{y^2}+y^2-y^2+2+2+2-2\)
\(\Rightarrow B=4\)
câu 1 bình phg chuyển vế cậu sẽ thấy điều kì diệu
câu 2 adbđt \(8\sqrt[4]{4x+4}=4\sqrt[4]{4.4.4\left(x+1\right)}\le x+13\)
a: \(=x-\dfrac{3}{2}+2y\)
b: \(=\dfrac{1}{x\left(y-x\right)}-\dfrac{1}{y\left(y-x\right)}=\dfrac{y-x}{xy\left(y-x\right)}=\dfrac{1}{xy}\)
a) \(x\left(xy+1\right)+y\left(xy-1\right)-xy\left(x+y\right)\)
\(=X^2y+x+xy^2-y-x^2y-xy^2\)
\(=x-y\)
g: (x+3y)(x-3y+2)
=(x+3y)(x-3y)+2(x+3y)
=x^2-9y^2+2x+6y
h: (x+2y)(x-2y+3)
=(x+2y)(x-2y)+3(x+2y)
=x^2-4y^2+3x+6y
i: (x^2-xy+y^2)(x+y)
=x^3+x^2y-x^2y-xy^2+xy^2+y^3
=x^3+y^3
j: (x+y)(x^2-xy+y^2)=x^3+y^3
k: (5x-2y)(x^2-xy-1)
=5x*x^2-5x*xy-5x-2y*x^2+2y*xy+2y
=5x^3-5x^2y-5x-2x^2y+2xy^2+2y
=5x^3-7x^2y+2xy^2-5x+2y
l: (x^2y^2-xy+y)(x-y)
=x^3y^2-x^2y^3-x^2y^2+xy^2+xy-y^2
1) Ta có: \(\dfrac{1}{7}x^2y^3\cdot\left(-\dfrac{14}{3}xy^2\right)\cdot\left(-\dfrac{1}{2}xy\right)\left(x^2y^4\right)\)
\(=\left(-\dfrac{1}{7}\cdot\dfrac{14}{3}\cdot\dfrac{-1}{2}\right)\left(x^2y^3\cdot xy^2\cdot xy\cdot x^2y^4\right)\)
\(=\dfrac{1}{3}x^6y^{10}\)
2) Ta có: \(\left(3xy\right)^2\cdot\left(-\dfrac{1}{2}x^3y^2\right)\)
\(=9xy^2\cdot\dfrac{-1}{2}x^3y^2\)
\(=-\dfrac{9}{2}x^4y^4\)
3) Ta có: \(\left(-\dfrac{1}{4}x^2y\right)^2\cdot\left(\dfrac{2}{3}xy^4\right)^3\)
\(=\dfrac{1}{16}x^4y^2\cdot\dfrac{8}{27}x^3y^{12}\)
\(=\dfrac{1}{54}x^7y^{14}\)
\(\dfrac{xy+x+y}{2}=1\)
\(\Rightarrow xy+x+y=2\)
\(\Rightarrow x\left(y+1\right)+y+1=2+1\)
\(\Rightarrow\left(x+1\right)\left(y+1\right)=3\)
Nếu \(x,y\in Z\) thì:
\(x+1;y+1\inƯ\left(3\right)=\left\{1;-1;3;-3\right\}\)
Ta có bảng
Nếu: \(x,y\in N\)
Thì lọc lại các x,y thỏa mãn ở phần trên sau khi lọc thì các cặp (x;y) thỏa mãn là: \(\left(0;2\right);\left(2;0\right)\)
Nếu: \(x,y\in R\)
\(\dfrac{xy+x+y}{2}=1\Rightarrow xy+x+y=2\)
\(\Rightarrow x\left(y+1\right)=2-y\Rightarrow x=\dfrac{2-y}{y+1}\)
Cứ có một giá trị của y thì sẽ có một giá trị của x tương ứng khi đó \(\left(x;y\right)=\left(\dfrac{2-y}{y+1};y\right)\)
VD: khi \(y=1\Rightarrow x=\dfrac{2-1}{1+1}=\dfrac{1}{2}\)