Thực hiện phép tính sau : (kq=2022/2023 - trình bày cách giải)
A=2022/2023/(0.4-2/11+2/13/1.4-7/11+7/13+2,5-5/3+1.25/3.5-7/3+1.75)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\dfrac{7}{22}\) - \(\dfrac{15}{23}\) + \(\dfrac{2022}{2023}\) - \(\dfrac{8}{23}\) + \(\dfrac{15}{22}\)
= ( \(\dfrac{7}{22}\) + \(\dfrac{15}{22}\)) - ( \(\dfrac{15}{23}+\dfrac{18}{23}\)) + \(\dfrac{2022}{2023}\)
= \(\dfrac{22}{22}\) - \(\dfrac{23}{23}\) + \(\dfrac{2022}{2023}\)
= 1 - 1 + \(\dfrac{2022}{2023}\)
= \(\dfrac{2022}{2023}\)
b, - \(\dfrac{2}{11}\) + 5\(\dfrac{5}{6}\) ( 14\(\dfrac{1}{5}\) - 11\(\dfrac{1}{5}\)): 5\(\dfrac{1}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) ( \(\dfrac{71}{5}\) - \(\dfrac{56}{5}\)) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{6}\) . \(\dfrac{15}{5}\) : \(\dfrac{11}{2}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{2}\) \(\times\) \(\dfrac{2}{11}\)
= - \(\dfrac{2}{11}\) + \(\dfrac{35}{11}\)
= \(\dfrac{33}{11}\)
= 3
c, 2000 + { 20 - [ 4.20220 - (32 + 5):2] }
= 2000 + { 20 - [ 4.1 - (9+5):2]}
= 2000 + { 20 - [ 4 - 14 : 2 ]}
= 2000 + { 20 - [ 4 -7]}
= 2000 + { 20 - (-3)}
= 2000 + 23
= 2023
2022/2023 . (9/13 - 7/11) + 2022/2023 . (17/13- 4/17)
= 2022/2023 . 190/43 + 2022/2023 . 237/221
= 2022/2023 . (190/43 + 237/221)
= 2022/2023 . 52181/9503
= 105509982/19224569
Sửa: \(\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}\right)+\dfrac{2022}{2023}\cdot\left(\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(\dfrac{9}{13}-\dfrac{7}{11}+\dfrac{17}{13}-\dfrac{4}{11}\right)\)
\(=\dfrac{2022}{2023}\cdot\left(2-1\right)\)
\(=\dfrac{2022}{2023}\cdot1\)
\(=\dfrac{2022}{2023}\)
a:
Sửa đề: \(S=1-3+5-7+...+2021-2023+2025\)
Từ 1 đến 2025 sẽ có:
\(\dfrac{2025-1}{2}+1=\dfrac{2024}{2}+1=1013\left(số\right)\)
Ta có: 1-3=5-7=...=2021-2023=-2
=>Sẽ có \(\dfrac{1013-1}{2}=\dfrac{1012}{2}=506\) cặp có tổng là -2 trong dãy số này
=>\(S=506\cdot\left(-2\right)+2025=2025-1012=1013\)
b: \(S=1+2-3-4+5+6-7-8+...+2021+2022-2023-2024\)
Từ 1 đến 2024 là: \(\dfrac{\left(2024-1\right)}{1}+1=2024\left(số\right)\)
Ta có: 1+2-3-4=5+6-7-8=...=2021+2022-2023-2024=-4
=>Sẽ có \(\dfrac{2024}{4}=506\) cặp có tổng là -4 trong dãy số này
=>\(S=506\cdot\left(-4\right)=-2024\)
Bài 1:
\(a.8,32+14,76+5,24=8,32+\left(14,76+5,24\right)\)
\(=8,32+20=28,32\)
\(b,16,88+9,76+3,12=\left(16,88+3,12\right)+9,76\)
\(=20+9,76=29,76\)
\(c,\left(\dfrac{2}{5}+\dfrac{7}{9}\right)+\dfrac{3}{5}=\left(\dfrac{2}{5}+\dfrac{3}{5}\right)+\dfrac{7}{9}\)
\(=1+\dfrac{7}{9}=\dfrac{16}{9}\)
\(d,\dfrac{19}{11}+\left(\dfrac{8}{13}+\dfrac{3}{11}\right)\)
\(=\left(\dfrac{19}{11}+\dfrac{3}{11}\right)+\dfrac{8}{13}=\dfrac{22}{11}+\dfrac{8}{13}\)
\(=2+\dfrac{8}{13}=\dfrac{34}{13}\)
Bài 1.
\(a,\left(2^4\cdot3\cdot5^2\right):\left\{450:\left[450-\left(4\cdot5^3-2^3\cdot5^2\right)\right]\right\}\)
\(=\left(16\cdot3\cdot25\right):\left\{450:\left[450- \left(4\cdot125-8\cdot25\right)\right]\right\}\)
\(=\left(48\cdot25\right):\left\{450:\left[450-\left(500-200\right)\right]\right\}\)
\(=1200:\left[450:\left(450-300\right)\right]\)
\(=1200:\left(450:150\right)\)
\(=1200:3\)
\(=400\)
\(---\)
\(b,3^3\cdot5^2-20\left\{90-\left[164-2\cdot\left(7^8:7^6+7^0\right)\right]\right\}\)
\(=27\cdot25-20\left\{90-\left[164-2\cdot\left(7^2+1\right)\right]\right\}\)
\(=675-20\left\{90-\left[164-2\cdot\left(49+1\right)\right]\right\}\)
\(=675-20\left[90-\left(164-2\cdot50\right)\right]\)
\(=675-20\left[90-\left(164-100\right)\right]\)
\(=675-20\left(90-64\right)\)
\(=675-20\cdot26\)
\(=675-520\)
\(=155\)
\(---\)
\(c,\left[\left(18^7:18^6-17\right)\cdot2022-1986\right]\cdot5\cdot1^{2022}-13^2\cdot2020^0\)
\(=\left[\left(18-17\right)\cdot2022-1986\right]\cdot5\cdot1-169\cdot1\)
\(=\left(1\cdot2022-1986\right)\cdot5-169\)
\(=\left(2022-1986\right)\cdot5-169\)
\(=36\cdot5-169\)
\(=180-169\)
\(=11\)
Bài 2.
\(a) (2^x+1)^2+3\cdot(2^2+1)=2^2\cdot10\\\Rightarrow (2^x+1)^2+3\cdot(4+1)=4\cdot10\\\Rightarrow (2^x+1)^2+3\cdot5=40\\\Rightarrow (2^x+1)^2+15=40\\\Rightarrow (2^x+1)^2=40-15\\\Rightarrow (2^x+1)^2=25\\\Rightarrow (2^x+1)^2= (\pm 5)^2\\\Rightarrow \left[\begin{array}{} 2^x+1=5\\ 2^x+1=-5 \end{array} \right.\\ \Rightarrow \left[\begin{array}{} 2^x=4\\ 2^x=-6 (vô.lí) \end{array} \right. \\ \Rightarrow 2^x=2^2\\\Rightarrow x=2\)
Vậy \(x=2\).
\(---\)
\(b)3\cdot(x-7)+2\cdot(x+5)=41\\\Rightarrow 3\cdot x+3\cdot(-7)+2\cdot x+2\cdot5=41\\\Rightarrow 3x-21+2x+10=41\\\Rightarrow (3x+2x)+(-21+10)=41\\\Rightarrow 5x-11=41\\\Rightarrow 5x=41+11\\\Rightarrow 5x=52\\\Rightarrow x=\dfrac{52}{5}\)
Vậy \(x=\dfrac{52}{5}\).
\(Toru\)
a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#
a) A=6 -13 +(-14+15+16-17)+(-18+19+20-21)+...+(-2018+2019+2020-2021)+(-2022+2023+2024-2025) +2025
A=-7 +0 +0 +...+0+0 +2025= 2018
B) 7-9+(-10+11+12-13)+(-14+15+16-17)+...+(-2018+2019+2020-2021)+2021
B= -2+0+0+...+0+2021=2019
#Có gì không hiểu thì hỏi nha#
a: N=(7-8)+(9-10)+...+(2009-2010)
=(-1)+(-1)+....+(-1)
=-1*1002=-1002
b: Đặt A=2+3+4+...+2023
Số số hạng là 2023-2+1=2022(số)
Tổng là (2023+2)*2022/2=2047275
=>P=1-2047275=-2047274
Bạn nên viết đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé. Viết thế này khó đọc quá.