Chứng minh rằng với mọi số x thuộc N thì (x+4)(x+7) chia hết cho 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15=\left(x^2+8x+7\right)\left(x^2+8x+15\right)+15\)
\(=\left(x^2+8x+11\right)^2-16+15=\left(x^2+8x+11\right)^2-1=\left(x^2+8x+10\right)\left(x^2+8x+12\right)\)
\(\left(x^2+8x+10\right)\left(x+2\right)\left(x+6\right)⋮\left(x+6\right)\)
\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15\)
\(\Rightarrow M=x^4+16x^3+86x^2+176x+120\)
\(\Rightarrow M=\left(x^2+8x+12\right)\left(x^2+8x+10\right)\)
\(\Rightarrow M=\left(x+2\right)\left(x+6\right)\left(x^2+8x+10\right)\)
Sau khi phân tích đa thức M thành nhân tử, ta thấy: M chứa thừa số x + 6 nên \(M⋮\left(x+6\right)\)
Vậy với mọi \(x\inℕ\)thì\(M=\left(x+1\right)\left(x+3\right)\left(x+5\right)\left(x+7\right)+15⋮\left(x+6\right)\)
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
Gọi \(P\left(x\right)=ax^4+bx^3+cx^2+dx+e\)
Theo bài ta có : \(P\left(x\right)⋮7\Rightarrow\hept{\begin{cases}P\left(0\right)⋮7\\P\left(1\right)⋮7\\P\left(-1\right)⋮7\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}e⋮7\\a+b+c+d+e⋮7\\a-b+c-d+e⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+b+c+d⋮7\\a-b+c-d⋮7\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}a+c⋮7\\b+d⋮7\end{cases}}\)
Mặt khác ta có : \(P\left(2\right)=16a+8b+4c+d+e⋮7\)
\(\Leftrightarrow2a+b+4c+d⋮7\)
\(\Leftrightarrow2\left(a+c\right)+b+d+2c⋮7\)
\(\Leftrightarrow2c⋮7\Leftrightarrow c⋮7\Leftrightarrow a⋮7\)
Chứng minh tương tự thì ta có \(a,b,c,d,e⋮7\). Ta có đpcm.
a. Vì n thuộc N* nên ta xét 2 trường hợp sau:
+ Nếu n là số lẻ => n+1 là số chẵn
=> n+1 chia hết cho 2
=> (n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
+ Nếu n là số chẵn => 3n là số chẵn
=> 3n+2 là một số chẵn
=> 3n+2 chia hết cho 2
=>(n+1)(3n+2) chia hết cho 2
=> (n+1)(3n+2) là một số chẵn
Vậy với n thuộc N* , (n+1)(3n+2) là một số chẵn
b, Vì 6x+11y chia hết cho 31
=> 6x+11y + 31y chia hết cho 31 (Vì 31y chia hết cho 31)
=> 6x+42y chia hết cho 31
=>6.(x + 7y) chia hết cho 31
=>x+7y chia hết cho 31 (Vì (6,31) = 1)
Vậy x,y thuộc Z , nếu 6x+11y chia hết cho 31 thì x+7y cũng chia hết cho 31
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
+)Với x chẵn <=> x=2k (k thuộc N)
<=>(x+4)(x+7)=(2k+4)(2k+7)=2(k+2)(2k+7) chia hết cho 2 (1)
+)Với x lẻ <=> x=2k+1 (k thuộc N)
<=>(x+4)(x+7)=(2k+1+4)(2k+1+7)=(2k+5)(2k+8)=(2k+5).2.(k+4) chia hết cho 2 (2)
Từ (1) và (2) => đpcm