Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
chứng minh rằng
a) nx(n+2)x(n+7) chia hết cho 3
b) 5^n-1 chia hết cho 4
c) n^2+n+2 khong chia het cho 5
a) =>n có dạng 3k,3k+1,3k+2 (k thuộc N)
-Nếu n có dạng 3k =>n chia hết cho 3 =>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+1=>n+2=3k+1+2=3k+3=3(k+1)
=>n+2 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
-Nếu n có dạng 3k+2=>n+7=3k+2+7=3k+9=3(k+3)
=>n+7 chia hết cho 3
=>n(n+2)(n+7) chia hết cho 3
Vậy n(n+2)(n+7) chia hết cho 3
b)Vì 5 chia 4 dư 1 =>5n chia 4 dư 1
=>5n-1 chia hết cho 4
Vậy 5n-1 chia hết cho 4
c)Ta có:n2+n+2=n(n+1)+2
Vì n(n+1) là tích của 2 số liên tiếp => có tận cùng là 0,2 hoặc 6
=>n(n+1)+2 có tận cùng là 2,4 hoặc 8
Mà tận cùng là 2,4 hay 8 đều không chia hết cho 5
=>n(n+2)+2 không chia hết cho 5
=>n2+n+2 không chia hết cho 5
Vậy n2+n+2 không chia hết cho 5
-----------------The end------------------
a) (n mũ 2+n) chia hết cho 2
=> n mũ 2 +n thuộc Ư(2), tự tìm ước của 2
a)
10^33 có dạng 10...0
=> 10^33 + 8 có dạng 10...08 chia hết cho 2
=> tổng các chữ số của nó là 1 + 8 = 9 chia hết cho 9
b) c) d) tương tự
a) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 1033 + 8 ) sẽ chia hết cho 2 ( vì 1033 + 8 có chữ số tận cùng là 8 )
( 1033 + 8 ) sẽ chia hết cho 9 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0.....+8 = 9 chia hết cho 9 )
b) 10 mủ mấy cũng chỉ có số 0 và 1
\(\Rightarrow\)( 10100 + 14 ) sẽ chia hết cho 2 ( vì 10100 + 14 có chữ số tận cùng là 4 )
( 10100 + 14 ) sẽ chia hết cho 3 ( vì tổng các số hạng của số là 1 + 0 + 0 + 0 +....+ 1 + 4 = 6 chia hết cho 3 )
d) với mọi n thuộc N thì 4 x 10n + 23 cũng sẽ chia hết cho 9
Vì tích của 4 và 10n sẽ có các số hạng của tích là 4 và 0
cộng cho 23 sẽ có các số hạng của tổng là 4; 0; 2; 3
Tổng của 4 + 0 + 2 + 3 = 9 chia hết cho 9
\(\Rightarrow\)Với mọi n thuộc N đều 4 x 10n + 23 chia hết cho 9
Câu b mk hông biết bạn tự làm nha
Hk tốt
a/ Nếu n chia hết cho 5 thì n(n+1)(n+2)(n+3)(n+4) chia hết cho 5 với mọi n
+ Nếu n chia 5 dư 1 thì n có dạng 5k+1 => n+4=5k+5=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 2 thì n có dạng n=5k+2 => n+3=5k+2+3=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 3 thì n có dạng n=5k+3 => n+2 =5K+3+2=5(k+1) chia hết cho 5
+ Nếu n chia 5 dư 4 thì n có dạng n=5k+4 => n+1 = 5k+4+1=5(k+1) chia hết cho 5
=> Biểu thức rên chia hết cho 5 với mọi n
b/
+ Nếu n lẻ => n+1 chẵn và 3n+2 lẻ => (n+1)(3n+2) chẵn => chia hết cho 2
+ Nếu n chẵn => n+1 lẻ và 3n+2 chẵn => (n+1)(3n+2) chẵn => chia hết cho 2
=> biểu thức chia hết cho 2 với mọi n thuộc N