K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 1

Lời giải:

$A=x^3+y^3+xy=(x+y)^3-3xy(x+y)+xy$

$=1-3xy+xy=1-2xy=(x+y)^2-2xy=x^2+y^2$

Áp dụng BĐT Cô-si:

$x^2+\frac{1}{4}\geq x$

$y^2+\frac{1}{4}\geq y$

$\Rightarrow A=x^2+y^2\geq x+y-\frac{1}{2}=1-\frac{1}{2}=\frac{1}{2}$
Vậy $A_{\min}=\frac{1}{2}$

Giá trị này đạt tại $x=y=\frac{1}{2}$

28 tháng 10 2018

\(x+y=1\Rightarrow x=1-y\)        

\(A=x^3+y^3+xy\)

\(=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2+y^2\) (vì x + y = 1)

\(=\left(1-y\right)^2+y^2\)

\(=2y^2-2y+1\)

\(=2\left(y^2-y+\frac{1}{4}\right)+\frac{1}{2}=2\left(y-\frac{1}{2}\right)^2+\frac{1}{2}\ge\frac{1}{2}\forall y\)

Dấu "=" xảy ra khi: \(y-\frac{1}{2}=0\Rightarrow y=\frac{1}{2}\Rightarrow x=1-y=\frac{1}{2}\)

Vậy GTNN của A là \(\frac{1}{2}\)khi \(x=y=\frac{1}{2}\)

28 tháng 10 2018

\(A=x^3+y^3+xy=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(=x^2-xy+y^2+xy=x^2+y^2\ge\frac{\left(x+y\right)^2}{2}=\frac{1}{2}\)

Nên min A là \(\frac{1}{2}\) khi \(x=y=\frac{1}{2}\)

4 tháng 6 2021

có: \(\dfrac{1}{x^2+y^2}=\dfrac{1}{\left(x+y\right)^2-2xy}=\dfrac{1}{1-2xy}\)(1)

có \(\dfrac{1}{xy}=\dfrac{2}{2xy}\left(2\right)\)

từ(1)(2)=>A=\(\dfrac{1}{1-2xy}+\dfrac{2}{2xy}\ge\dfrac{\left(1+\sqrt{2}\right)^2}{1}=\left(1+\sqrt{2}\right)^2\)

=>Min A=(1+\(\sqrt{2}\))^2

 

 

4 tháng 6 2021

cảm ơn rất nhiều

 

\(B=\frac{x^3}{y+1}+\frac{y^3}{1+x}=\frac{\left(x^4+y^4\right)+\left(x^3+y^3\right)}{xy+x+y+1}\)

\(=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-xy\right)}{x+y+2}=\frac{\left(x^4+y^4\right)+\left(x+y\right)\left(x^2+y^2-1\right)}{x+y+2}\)

Áp dụng BĐT cô si với các số dương x; y2 ; x4 ; yta được :

\(B\ge\frac{2x^2y^2+\left(x+y\right)\left(2xy-1\right)}{x+y+2}=\frac{2+\left(x+y\right)}{x+y+2}=1\)

Dấu ''='' xảy ra khi \(\Leftrightarrow x=y=1\)

31 tháng 10 2015

BÀI 2 a, x2+x+1=(x2+1/2*2*x+1/4)-1/4+1=(x+1/2)2 +3/4

MÀ (x+1/2)2>=0 với mọi giá trị của x .Dấu"=" xảy ra khi x+1/2=0 =>x=-1/2

    =>(x+1/2)2+3/4>=3/4 với mọi giá trị của x .Dấu "=" xảy ra khi x=-1/2

   =>x2+x+1 có giá trị nhỏ nhất là 3/4 khi x=-1/2

   b,A=y(y+1)(y+2)(y+3)

=>A =[y(y+3)] [(y+1)(y+2)]

  =>A=(y2+3y) (y2+3y+2)

Đặt X=y2+3y+1

=>A=(X+1)(X-1)

=>A=X2-1

=>A=(y2+3y+1)2-1

MÀ (y2+3y+1)2>=0 với mọi giá trị của y

=>(y2+3y+1)2-1>=-1

Vậy GTNN của Alà -1

c,B=x3+y3+z3-3xyz

=>B=(x3+y3)+z3-3xyz

=>B=(x+y)3-3xy(x+y)+z3-3xyz

=>B=[(x+y)3+z3]-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2)-3xy(x+y+z)

=>B=(x+y+z)(x2+2xy+y2-xz-yz+z2-3xy)

=>B=(x+y+z)(x2+y2+z2-xy-xz-yz)

25 tháng 7 2018

Ai giúp mik vs

25 tháng 7 2018

Huhu ai giúp vs

30 tháng 12 2020

 bbgfhfygfdsdty64562gdfhgvfhgfhhhhh

\hvhhhggybhbghhguyg

8 tháng 3 2017

ta biến đổi thành

x^3+y^3+xy=8-5xy

suy ra M_min thì 5xy_max 

ta có 5xy <= \(5\left(\frac{x+y}{2}\right)^2\)

dấu "=" khi x=y=1 

vật M_min=3

11 tháng 1 2017

bài này ko hay cho lắm, cách làm cụ thể nhất trong cái nhất r` đấy

a)Ta thấy: \(\left|x-5\right|\ge0\)

\(\Rightarrow-\left|x-5\right|\le0\)

\(\Rightarrow1000-\left|x-5\right|\le1000\)

\(\Rightarrow A\le1000\)

Dấu "=" xảy ra khi \(\left|x-5\right|=0\Leftrightarrow x=5\)

Vậy \(Max_A=1000\) khi \(x=5\)

b)Ta thấy: \(\left|y-3\right|\ge0\)

\(\Rightarrow\left|y-3\right|+50\ge50\)

\(\Rightarrow B\ge50\)

Dấu "="xảy ra khi \(\left|y-3\right|=0\Leftrightarrow y=3\)

Vậy \(Min_B=50\) khi \(y=3\)

c)Ta thấy: \(\hept{\begin{cases}\left|x-100\right|\ge0\\\left|y+200\right|\ge0\end{cases}}\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|\ge0\)

\(\Rightarrow\left|x-100\right|+\left|y+200\right|-1\ge-1\)

\(\Rightarrow C\ge-1\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left|x-100\right|=0\\\left|y+200\right|=0\end{cases}}\Rightarrow\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

Vậy \(Min_C=-1\) khi \(\hept{\begin{cases}x=100\\y=-200\end{cases}}\)

11 tháng 1 2017

Khó vậy bạn

Mình mới lớp 7

Ai cho mình xin k nhé

Thanks