K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 7:

a:

Ta có: ΔABC đều

=>AB=AC=BC và \(\widehat{BAC}=\widehat{ABC}=\widehat{ACB}=60^0\)

Xét ΔABC có \(\widehat{ACE}\) là góc ngoài tại đỉnh C

nên \(\widehat{ACE}=\widehat{CAB}+\widehat{CBA}=120^0\)

Xét ΔACE có \(\widehat{ACE}>90^0\)

nên AE là cạnh lớn nhất trong ΔACE

=>AE>AC

=>AE>AB

b: Xét ΔCAE có CA=CE(=BC)

nên ΔCAE cân tại C

=>\(\widehat{CAE}=\dfrac{180^0-120^0}{2}=30^0\)

Ta có: ΔABC cân tại A

mà AH là đường cao

nên AH là phân giác của góc BAC

=>\(\widehat{HAC}=\dfrac{\widehat{BAC}}{2}=30^0\)

=>\(\widehat{HAC}=\widehat{CAE}\)

=>AC là phân giác của góc HAE
bài 9:

a: ta có: ΔABC cân tại A

mà AH là đường trung tuyến

nên AH\(\perp\)BC

b: Xét ΔAHM vuông tại H có AM là cạnh huyền

nên AM là cạnh lớn nhất trong ΔAHM

=>AM>AH

Xét ΔAHM có \(\widehat{AMB}\) là góc ngoài tại đỉnh M

nên \(\widehat{AMB}=\widehat{AHM}+\widehat{HAM}=90^0+\widehat{HAM}\)

=>\(\widehat{AMB}>90^0\)

Xét ΔAMB có \(\widehat{AMB}>90^0\)

nên AB là cạnh lớn nhất trong ΔAMB

=>AB>AM

=>AB>AM>AH

=>AC>AM>AH

25 tháng 1

loading...  

13 tháng 12 2023

loading...  

14 tháng 12 2023

Bài 18:

loading...

loading...

loading...

30 tháng 10 2023

loading...  

30 tháng 10 2023

\(\widehat{x'MC}=\widehat{xMN}\)(hai góc đối đỉnh

mà \(\widehat{xMN}=60^0\)

nên \(\widehat{x'MC}=60^0\)

Mz là phân giác của \(\widehat{x'MC}\)

=>\(\widehat{x'Mz}=\widehat{CMz}=\dfrac{60^0}{2}=30^0\)

Mz//Nt

=>\(\widehat{zMC}=\widehat{tNM}\)(hai góc đồng vị)

=>\(\widehat{tNM}=30^0\)

Nt là phân giác của góc y'NM

=>\(\widehat{y'NM}=2\cdot\widehat{tMN}=60^0\)

1 tháng 11 2023

a) ∠CEz + ∠zEy' = 180⁰ (kề bù)

⇒ ∠CEz = 180⁰ - ∠zEy'

= 180⁰ - 120⁰

= 60⁰

⇒ ∠CEz = ∠xDz = 60⁰

Mà ∠CEz và ∠xDz là hai góc đồng vị

⇒ xx' // yy'

b) Do HC ⊥ xx' (gt)

xx' // yy' (cmt)

⇒ HC ⊥ yy'

c) Do HC ⊥ yy' (cmt)

⇒ ∠HCy = 90⁰

⇒ ∠BCy = ∠HCy - ∠BCH

= 90⁰ - 40⁰

= 50⁰

c) Vẽ tia Bt // xx'//yy'

⇒ ∠CBt = ∠BCy = 50⁰ (so le trong)

⇒ ∠ABt = ∠ABC - ∠CBt

= 90⁰ - 50⁰

= 40⁰

Do Bt // xx'

⇒ ∠xAB = ∠ABt = 40⁰ (so le trong)

Ta có:

∠BAx' + ∠xAB = 180⁰ (kề bù)

⇒ ∠BAx' = 180⁰ - ∠xAB

= 180⁰ - 40⁰

= 140⁰

e) Do AB cắt tia Bt tại B

Mà Bt // yy'

⇒ AB cắt yy'

1 tháng 11 2023

loading...  

19 tháng 10 2023

Sao bn ko copy ảnh trong phần câu hỏi luôn ik ❓

19 tháng 10 2023

loading...  

13 tháng 12 2023

loading...  

14 tháng 12 2023

Bài 18:

loading...

loading...

loading...

13 tháng 12 2023

bài 17:

a: Xét ΔBAD và ΔBED có

BA=BE

\(\widehat{ABD}=\widehat{EBD}\)

BD chung

Do đó: ΔBAD=ΔBED

b: Ta có: ΔBAD=ΔBED

=>DA=DE

Ta có: ΔBAD=ΔBED

=>\(\widehat{BAD}=\widehat{BED}\)

mà \(\widehat{BAD}=90^0\)

nên \(\widehat{BED}=90^0\)

=>DE\(\perp\)BC

c: ta có: BA=BE

=>B nằm trên đường trung trực của AE(1)

Ta có: DA=DE
=>D nằm trên đường trung trực của AE(2)

Từ (1) và (2) suy ra BD là đường trung trực của AE
=>BD\(\perp\)AE tại I là trung điểm của AE

d: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có

DA=DE

AF=EC

Do đó: ΔDAF=ΔDEC

=>\(\widehat{ADF}=\widehat{EDC}\)

mà \(\widehat{EDC}+\widehat{ADE}=180^0\)(hai góc kề bù)

nên \(\widehat{ADF}+\widehat{ADE}=180^0\)

=>D,E,F thẳng hàng

13 tháng 12 2023

loading...  

5 tháng 11 2023

loading...  

 

OM\(\perp\)AB

=>\(\widehat{MOA}=\widehat{MOB}=90^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OA, ta có: \(\widehat{AOE}< \widehat{AOM}\)

nên tia OE nằm giữa hai tia OA và OM

=>\(\widehat{AOE}+\widehat{MOE}=\widehat{AOM}=90^0\)

Trên cùng một nửa mặt phẳng bờ chứa tia OB, ta có: \(\widehat{BOF}< \widehat{BOM}\)

nên tia OF nằm giữa hai tia OB và OM

=>\(\widehat{BOF}+\widehat{MOF}=\widehat{BOM}=90^0\)

=>\(\widehat{AOE}+\widehat{MOE}=\widehat{BOF}+\widehat{MOF}\)

mà \(\widehat{AOE}=\widehat{BOF}\)

nên \(\widehat{MOE}=\widehat{MOF}\)

=>OM là phân giác của \(\widehat{EOF}\)

5 tháng 5 2022

ủa? đây địa lý mà

5 tháng 11 2023

loading...  

5 tháng 11 2023

Có vẽ hình nha mn