K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1 2024

ĐKXĐ: \(x\ge1\)

Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)

Ta được hệ: 

\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)

\(\Rightarrow a^2+\left(1-a\right)^3=1\)

\(\Leftrightarrow a^3-4a^2+3a=0\)

\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)

NV
23 tháng 1 2024

ĐKXĐ: \(0\le x\le9\)

Bình phương 2 vế ta được:

\(x+9-x+2\sqrt{x\left(9-x\right)}=-x^2+9x+9\)

\(\Leftrightarrow-x^2+9x-2\sqrt{-x^2+9x}=0\)

\(\Leftrightarrow\sqrt{-x^2+9x}\left(\sqrt{-x^2+9x}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{-x^2+9x}=0\\\sqrt{-x^2+9x}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}-x^2+9x=0\\-x^2+9x-4=0\end{matrix}\right.\)

Tới đây em tự hoàn thành nốt

28 tháng 2 2022

Bo thi:>

undefined

28 tháng 2 2022

+ đk x > 0 , x khác 1

9 tháng 3 2022

Mọi người ơi, giúp em với ạ!

 

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}+1}=\dfrac{\sqrt{x}-1}{\sqrt{x}}\)

\(\Leftrightarrow\left(x+3\right)\sqrt{2x^2+1}-\left(x+3\right)=x^2\)

=>\(\left(x+3\right)\cdot\left(\sqrt{2x^2+1}-1\right)=x^2\)

=>\(\left(x+3\right)\cdot\dfrac{2x^2+1-1}{\sqrt{2x^2+1}+1}-x^2=0\)

=>\(x^2\left(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}-1\right)=0\)

=>x^2=0 hoặc \(\dfrac{2\left(x+3\right)}{\sqrt{2x^2+1}+1}=1\)

=>\(\left[{}\begin{matrix}x=0\\\sqrt{2x^2+1}+1=2x+6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2x^2+1=\left(2x+5\right)^2;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\4x^2+20x+25-2x^2-1=0;x>=-\dfrac{5}{2}\end{matrix}\right.\)

=>\(\left[{}\begin{matrix}x=0\\\left\{{}\begin{matrix}2x^2+20x+24=0\\x>=-\dfrac{5}{2}\end{matrix}\right.\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5+\sqrt{13}\end{matrix}\right.\)

=>Phương trình này có 2 nghiệm

31 tháng 8 2023

Tks bạn ạ

 

14 tháng 3 2022

3x(2-x)-5=1-(3x2+2)

<=>6x-3x2-5=-3x2-2

<=>6x=3

<=>x=1/2

NV
13 tháng 12 2020

1.

\(2x+1\ge0\Rightarrow x\ge-\dfrac{1}{2}\)

Khi đó pt đã cho tương đương:

\(x^2+2x+2m=\left(2x+1\right)^2\)

\(\Leftrightarrow x^2+2x+2m=4x^2+4x+1\)

\(\Leftrightarrow3x^2+2x+1=2m\)

Xét hàm \(f\left(x\right)=3x^2+2x+1\) trên \([-\dfrac{1}{2};+\infty)\)

\(-\dfrac{b}{2a}=-\dfrac{1}{3}< -\dfrac{1}{2}\)

\(f\left(-\dfrac{1}{2}\right)=\dfrac{3}{4}\) ; \(f\left(\dfrac{1}{3}\right)=\dfrac{2}{3}\)

\(\Rightarrow\) Pt đã cho có 2 nghiệm pb khi và chỉ khi \(\dfrac{2}{3}< 2m\le\dfrac{3}{4}\)

\(\Leftrightarrow\dfrac{1}{3}< m\le\dfrac{3}{8}\)

\(\Rightarrow P=\dfrac{1}{8}\)

NV
13 tháng 12 2020

3.

Đặt \(x^2=t\ge0\Rightarrow\left[{}\begin{matrix}x=\sqrt{t}\\x=-\sqrt{t}\end{matrix}\right.\)

Pt trở thành: \(t^2-3mt+m^2+1=0\) (1)

Pt đã cho có 4 nghiệm pb khi và chỉ khi (1) có 2 nghiệm dương pb

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=9m^2-4\left(m^2+1\right)>0\\t_1+t_2=3m>0\\t_1t_2=m^2+1>0\end{matrix}\right.\) \(\Rightarrow m>\dfrac{2}{\sqrt{5}}\)

Ta có:

\(M=x_1+x_2+x_3+x_4+x_1x_2x_3x_4\)

\(=-\sqrt{t_1}-\sqrt{t_2}+\sqrt{t_1}+\sqrt{t_2}+\left(-\sqrt{t_1}\right)\left(-\sqrt{t_2}\right)\sqrt{t_1}.\sqrt{t_2}\)

\(=t_1t_2=m^2+1\) với \(m>\dfrac{2}{\sqrt{5}}\)

6 tháng 11 2021

ĐKXĐ: \(x\ge3\)

\(pt\Leftrightarrow5\sqrt{x-3}+3\sqrt{x-3}-\sqrt{x-3}=7\)

\(\Leftrightarrow7\sqrt{x-3}=7\Leftrightarrow\sqrt{x-3}=1\)

\(\Leftrightarrow x-3=1\Leftrightarrow x=4\left(tm\right)\)

5 tháng 4 2019

 \(ĐK:x\ge1\)

Pt (1)  <=> \(y^2-y\sqrt{x-1}-y+\sqrt{x-1}=0\)

<=> \(\left(y^2-y\right)-\left(y\sqrt{x-1}-\sqrt{x-1}=0\right)\)

<=> \(y\left(y-1\right)-\sqrt{x-1}\left(y-1\right)=0\)

<=> \(\left(y-1\right)\left(y-\sqrt{x-1}\right)=0\Leftrightarrow\orbr{\begin{cases}y-1=0\\y-\sqrt{x-1}=0\end{cases}}\)

+) Với y-1=0 <=> y=1

Thế vào phương trình thứ (2) ta có: \(x^2+1-\sqrt{7x^2-3}=0\Leftrightarrow7x^2+7-7\sqrt{7x^2-3}=0\)

Đặt \(\sqrt{7x^2-3}=t\left(t\ge0\right)\)

Ta có phương trình ẩn t:

\(t^2-7t+10=0\Leftrightarrow\orbr{\begin{cases}t=2\\t=5\end{cases}}\)

Với t =2 ta có: \(\sqrt{7x^2-3}=2\Leftrightarrow7x^2-3=4\Leftrightarrow x^2=1\Leftrightarrow\orbr{\begin{cases}x=1\left(tm\right)\\x=-1\left(l\right)\end{cases}}\)

Với t=5 ta có: \(\sqrt{7x^2-3}=5\Leftrightarrow7x^2-3=25\Leftrightarrow x^2=4\Leftrightarrow\orbr{\begin{cases}x=2\left(tm\right)\\x=-2\left(l\right)\end{cases}}\)

Vậy hệ có 2nghiem (x,y) là (2,1) và (1, 1)

+) Với \(y-\sqrt{x-1}=0\Leftrightarrow y=\sqrt{x-1}\)

Thế vào phương trình (2) ta có:

\(x^2+\sqrt{x-1}-\sqrt{7x^2-3}=0\Leftrightarrow\left(\sqrt{x-1}-1\right)+\left(x^2+1-\sqrt{7x^2-3}\right)=0\)

<=> \(\frac{\left(x-1\right)-1}{\sqrt{x-1}+1}+\frac{x^4+2x^2+1-7x^2+3}{x^2+1+\sqrt{7x^2-3}}=0\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}+\frac{x^4-5x^2+4}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\frac{x-2}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x^2-4\right)}{x^2+1+\sqrt{7x^2-3}}=0\)

<=> \(\left(x-2\right)\left(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}\right)=0\)

vì \(\frac{1}{\sqrt{x-1}+1}+\frac{\left(x^2-1\right)\left(x+2\right)}{x^2+1+\sqrt{7x^2-3}}>0\)với mọi lớn hơn hoặc bằng 1

phương trình trên <=> x-2=0<=> x=2 thỏa mãn đk

Với x=2 ta có: \(y=\sqrt{2-1}=1\)

Hệ có 1nghiem (2,1)

Kết luận:... (2, 1), (1,1)

6 tháng 4 2019

Em cảm ơn chị Nguyễn Linh Chi nhiều ạ!

26 tháng 2 2020

1) ĐK: \(x\ge-1\)

\(\sqrt{9x^2+9x+4}>9x+3-\sqrt{x+1}\)

<=> \(\sqrt{9x^2+9x+4}+\sqrt{x+1}>9x+3\)(1)

TH1: 9x + 3 \(\le\)0 <=> x\(\le-\frac{1}{3}\)

(1) luôn đúng 

Th2: x\(>-\frac{1}{3}\)

<=> \(\left(\frac{1}{2}x+1-\sqrt{x+1}\right)+\left(\frac{17}{2}x+2-\sqrt{9x^2+9x+4}\right)< 0\)

<=> \(\frac{\frac{1}{4}x^2}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{\frac{253}{4}x^2}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}< 0\)

<=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)< 0\)vô nghiệm 

 Vì với x \(>-\frac{1}{3}\)

ta có: \(\frac{1}{2}x+1+\sqrt{x+1}>0\)

\(\frac{17}{2}x+2+\sqrt{9x^2+9x+4}=\frac{17}{2}x+2+\sqrt{3\left(x+\frac{1}{2}\right)^2+\frac{7}{4}}>\frac{17}{2}x+2+1>0\)

=> \(\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)>0\)với x \(>-\frac{1}{3}\) và \(x^2\ge0\)với mọi x

=> \(\frac{x^2}{4}\left(\frac{1}{\frac{1}{2}x+1+\sqrt{x+1}}+\frac{253}{\frac{17}{2}x+2+\sqrt{9x^2+9x+4}}\right)\ge0\)với x\(>-\frac{1}{3}\)

Vậy \(x< -\frac{1}{3}\)

26 tháng 2 2020

Xin lỗi bạn kết luận bài 1 là:

\(-1\le x\le-\frac{1}{3}\)

Bài 2)  \(2+\sqrt{x+2}-x\sqrt{x+2}=x\left(\sqrt{x+2}-x\right)\)(2)

ĐK: \(x\ge-2\)

(2) <=> \(2+\sqrt{x+2}+x^2-2x\sqrt{x+2}=0\)

<=> \(8+4\sqrt{x+2}+4x^2-8x\sqrt{x+2}=0\)

<=> \(\left(2x-1\right)^2-4\left(2x-1\right)\sqrt{x+2}+4\left(x+2\right)-1=0\)

<=> \(\left(2x-1-2\sqrt{x+2}\right)^2-1=0\)

<=> \(\left(x-1-\sqrt{x+2}\right)\left(x-\sqrt{x+2}\right)=0\)

<=> \(\orbr{\begin{cases}x-1=\sqrt{x+2}\left(3\right)\\x=\sqrt{x+2}\left(4\right)\end{cases}}\)

(3) <=> \(\hept{\begin{cases}x\ge1\\x^2-3x-1=0\end{cases}}\Leftrightarrow x=\frac{3+\sqrt{13}}{2}\left(tm\right)\)

(4) <=> \(\hept{\begin{cases}x\ge0\\x^2-x-2=0\end{cases}\Leftrightarrow}x=2\left(tm\right)\)

Kết luận:...