a/ cho n là số tự nhiên lẻ tìm n để \(a=3n^2+6n+13\) là số chính phương
b/cho a,b,c >0 và a+b+c=1
timg GTNN của biểu thức \(A=a^3+b^3+c^3\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ Đặt A=6n2+n-7
=> 3A= 3(6n2-4n+5n-7)=3(6n2-4n)+15n-21 = 6n(3n-2)+15n-10-11=6n(3n-2)+5(3n-2)-11=(3n-2)(6n+5)-11
Nhận thấy: (3n-2)(6n+5) chia hết cho 3n-2 với mọi n
=> Để A nguyên (hay 3A nguyên) thì 11 phải chia hết cho 3n-2 => 3n-2=(-11,-1,1,11)
3n-2 | -11 | -1 | 1 | 11 |
n | -3 | 1/3(loại) | 1 | 13/3(loại) |
3A | -44 | Loại | 0 | Loại |
A | -44/3(loại) | Loại | 0 | Loại |
Đáp số: n=1
a) ta có A=n2(n-1)+(n-1)=(n-1)(n2+1)
vì A nguyên tố nên A chỉ có 2 ước
TH1 n-1=1 và n2+1 nguyên tố => n=2 và n2+1=5 thỏa mãn
TH2 n2+1=1 và n-1 nguyên tố => n=0 và n-1 = -1 k thỏa mãn
vậy n=2
xin lỗi mình chỉ biết làm phần a thôi còn phần b,c bạn tự làm nhé
CHÚC BẠN HỌC GIỎI
TK MÌNH NHÉ